Et si l'intelligence artificielle (IA) permettait de détecter la fatigue chez le radiologue avant même qu'il s'en aperçoive ? Pour en avoir le cœur net, Bulat Ibragimov, professeur au sein du département de sciences informatiques de l'université de Copenhague (Danemark), et ses collègues, ont analysé la proportion des poumons observée par quatre radiologues sur une station de travail munie de suivi oculaire. D’après leurs résultats, publiés le 9 janvier dans Journal of Digital Imaging, le champ de vision des radiologues diminue de 1,3 % à 7,6 % toutes les 100 radiographies thoraciques, quelles que soient les anomalies présentes sur les images [1]. Cette baisse de la couverture visuelle des images, expliquent-ils, pourrait informer les radiologues qu’il est temps de recourir à une validation extérieure.
400 radiographies thoraciques interprétées
Pour analyser les mouvements oculaires des radiologues, les auteurs de l'étude en ont recruté quatre, auxquels ils ont demandé d’interpréter 400
Discussion
Aucun commentaire
Commenter cet article