Intelligence artificielle

Un réseau de neurones détecte et segmente les lésions cérébrales traumatiques

Des chercheurs britanniques et argentins ont entraîné et testé un algorithme capable de détecter les différents types de lésions cérébrales traumatiques, de les segmenter et de quantifier leur volume par voxel. Les performances seraient proches de celles des médecins experts.

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/06/20 à 7:00, mise à jour aujourd'hui à 14:09 Lecture 3 min.

« Le réseau de neurones convolutifs a fourni une prédiction bien calibrée du volume des lésions puisque les différences entre le volume réel et le volume prédit étaient faibles par rapport au volume global des lésions », notent les chercheurs. CC0 Monteiro et coll.

Leur modèle pourrait fournir une base « plus objective que l’évaluation visuelle » pour orienter la prise en charge thérapeutique et mettre en place des stratégies de traitement personnalisées et optimisées. Des chercheurs britanniques et argentins ont développé un algorithme d’apprentissage profond qui peut segmenter et quantifier les lésions cérébrales d’origine traumatique sur des examens de scanner, mais aussi les détecter et en discriminer les différents types. Ils décrivent leurs travaux dans la revue The Lancet Digital Health [1].

Deux bases pour l’entraînement

Miguel Monteiro et ses confrères ont commencé par entraîner un réseau de neurones convolutifs baptisé DeepMedic à l’aide d’une base de 98 examens sur lesquels des experts avaient segmenté manuellement les lésions. Ils l’ont ensuite utilisé pour opérer des segmentations automatiques sur les examens d’une autre base de 839 examens, qu’ils ont corrigées manuellement. De cette dernière base de données, ils ont extrait un sous-e

Il vous reste 78% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint

Voir la fiche de l’auteur

Bibliographie

  1. Monteiro M., Newcombe V. F. J., Mathieu F. et coll., « Multiclass semenatic segmentation and quantification of traumatic brain injury lesions no head CT using deep learning: an algorithm development and multicentre validation study », The Lancet Digital Health, 14 mai 2020. DOI : 10.1016/S2589-7500(20)30085-6.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

25 Nov

16:30

Des chercheurs constatent dans le JACR que les référents sont souvent en accord avec les recommandations d'imagerie de suivi des radiologues pour les patients externes. Les données démographiques et les facteurs socio-économiques des patients ne semblent pas avoir d'effet significatif sur cette concordance, concluent-ils.

13:30

Ajouter un glossaire, des illustrations ou un résumé rédigé dans un langage simple au compte rendu d'imagerie permet d'améliorer la compréhension des informations par les patients et ainsi d'augmenter leur satisfaction, indique une étude présentée dans European Radiology.

7:30

Alors que la mammographie nécessite une qualité d’image optimale, des chercheurs ont constaté qu’une faible lumière ambiante dans les salles d’acquisition des services d’imagerie mammaire permet une meilleure visibilité, à l’inverse d’une forte lumière ambiante avec des murs blancs autour de l’écran.
22 Nov

16:00

Pour les patients non obèses, l’utilisation combinée d’une faible tension du tube (60 kVp) et d’un nouvel algorithme de reconstruction d’images par apprentissage profond (ClearInfinity, DLIR-CI) peut préserver la qualité de l’image tout en permettant des économies de dose de rayonnement et de produit de contraste pour le scanner aortique (étude).
Docteur Imago

GRATUIT
VOIR