Intelligence artificielle

Un algorithme combine l’imagerie et les données cliniques pour diagnostiquer le COVID-19 au scanner

Un réseau de neurones convolutif développé par une équipe étasunienne à l’aide des examens de scanner thoracique et des données cliniques de 905 patients aurait montré une sensibilité supérieure à celle des radiologues et une bonne spécificité pour détecter le COVID-19.

icon réservé aux abonnésArticle réservé aux abonnés
Le 08/06/20 à 7:00, mise à jour aujourd'hui à 14:16 Lecture 3 min.

Des chercheurs américains ont créé un réseau de neurones combinant les données radiologiques et les informations cliniques pour prédire l’infection ou non par le COVID-19. © Benjamin Bassereau

Le scanner thoracique fait preuve d'une valeur prédictive négative limitée pour le diagnostic du COVID-19, certains patients pouvant présenter des examens normaux aux stades précoces de la maladie. Des chercheurs de la faculté de médecine Icahn, du Mount Sinai Hospital, à New York ont voulu combler cette lacune en développant un algorithme d’intelligence artificielle capable d’exploiter les données d’imagerie et les informations cliniques des patients.

Un réseau de neurones convolutif et des classificateurs

« Nous avons développé un réseau de neurones convolutif pour qu’il apprenne les caractéristiques de l’imagerie des patients COVID-19 sur le scanner initial, décrivent-ils dans la revue Nature [1]. Nous avons ensuite utilisé les classificateurs machines à vecteurs de support (SVM, support vector machine), forêt aléatoire (random forest) et perceptron multicouche (multilayer perceptron MLP) pour classer les patients atteints de COVID-19 en fonction des informations cliniques. » Ils ont

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Xueyan M., Hao-Chih L., Yang Y et coll., « Artificial intelligence-enabled rapid diagnosis of patients with COVID-19 », Nature Medicine, 19 mai 2020. DOI : 10.1038/s41591-020-0931-3.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

09 Déc

16:00

L'entreprise Agfa annonce la suppression de 145 postes en Belgique, due à l'accélération du déclin du film radiologique sur le marché mondial (communiqué).

14:00

Une étude passe en revue l'utilité des algorithmes basés sur l'IA et l'apprentissage automatique pour faciliter efficacement le triage et rationaliser le flux de travail en radiologie pédiatrique.

7:23

L'arrêté du 5 décembre 2025 fixe à 295 le nombre maximum d'autorisations d'exercice des personnes titulaires d'un diplôme permettant l'exercice, dans le pays d'obtention de ce diplôme, de la profession de médecin, pour la période du 15 décembre 2025 au 15 décembre 2026. Pour la radiologie, le nombre d'autorisations est fixé à 3. Ces personnes doivent avoir satisfait à des épreuves de vérification des connaissances, précise l'arrêté.
08 Déc

16:12

Le scanner double-énergie en scanner n’apporte pas de supériorité technique constante par rapport au scanner standard pour la résolution en contraste des métastases hépatiques hypovasculaires, selon une méta-analyse.

11:00

Bayer a présenté au RSNA les premiers résultats pédiatriques de son étude QUANTI, montrant que son agent de contraste IRM gadoquatrane offre un profil pharmacocinétique et une sécurité comparables à ceux de l’adulte, tout en réduisant de 60 % la dose (communiqué).
Docteur Imago

GRATUIT
VOIR