L’intelligence artificielle s’impose petit à petit dans le monde de l’imagerie médicale. Mais que se passe-t-il quand elle ne fonctionne pas ? C’est la question que se sont posée différents médecins lors d’une session du congrès de la Société nord-américaine de radiologie (RSNA) 2021. En ouverture, Katherine Andriole, professeure de radiologie au Brigham and Women’s hospital, basé à Boston, dans le Massachusetts, a rappelé que le développement d’une solution d’intelligence artificielle est long et se divise en plusieurs étapes : collecte de données, identification de la cohorte, annotations, construction d’un modèle, validation… « Il peut donc y avoir des erreurs. C’est pourquoi la contribution clinique est importante à chaque étape », souligne-t-elle.
« Restez critiques sur les modèles »
Pour cette spécialiste, la contribution clinique permet d’éviter les erreurs et doit impliquer toutes les parties : physiciens médicaux, manipulateurs en radiologie, etc. dès la conception de l’outil et
Discussion
Aucun commentaire
Commenter cet article