Aide au diagnostic

L’intelligence artificielle distingue le COVID-19 d’une pneumonie sur les coupes de scanner

Des chercheurs chinois ont développé un modèle basé sur l’apprentissage profond capable de diagnostiquer le COVID-19 sur des examens de scanner avec une sensibilité et une spécificité très hautes et de le différencier d’une pneumonie communautaire, qui présente des caractéristiques similaires à l’imagerie.

Le 25/03/20 à 12:00, mise à jour aujourd'hui à 15:15 Lecture 2 min.

Pour entraîner leur modèle, les chercheurs ont collecté les données de scanner réalisés dans 6 hôpitaux sur des patients atteints de COVID-19, mais aussi, pour comparaison, sur des patients atteints de pneumonie communautaire et sur d’autres qui ne présentaient pas de pneumonie (photo d'illustration). © Chung M., Bernheim A., Mei X. et coll.

Il n’aura pas fallu longtemps pour que des chercheurs étudient les possibilités de l’intelligence artificielle pour la prise en charge du coronavirus. Une équipe de radiologues chinois présente ainsi dans Radiology un outil basé sur l’apprentissage profond capable de dépister le COVID-19 sur des examens de scanner thoracique [1].

Des données issues de 6 hôpitaux

Pour entraîner leur modèle, baptisé COVNet, ces médecins ont collecté les données d’examens de scanner réalisés dans 6 hôpitaux sur des patients atteints de COVID-19, mais aussi, pour comparaison, sur des patients atteints de pneumonie communautaire et sur d’autres qui ne présentaient pas de pneumonie. Au total, ils ont rassemblé les données de 4 356 scanners réalisés sur 3 322 patients entre août 2016 et février 2020.

90 % de sensibilité, 96 % de spécificité

Les patients étaient âgés en moyenne de 49 ± 15 ans. 1 838 étaient des hommes et 1 484 des femmes. Testé sur un jeu de données indépendant, le modèle a montré une sensibilité et une spécificité par examen pour la détection du COVID-19 de 90 % [95 % CI : 83 %, 94 %] et de 96 % [95 % CI : 93 %, 98 %) respectivement, avec une aire sous la courbe ROC de 0,96. Pour la détection de la pneumonie communautaire, la sensibilité pointe à 87 %, la spécificité à 92 % et l’AUC à 0,95. L’outil fournissait un résultat en moins de 5 secondes, sur une station de travail équipée d’un processeur graphique puissant.

Améliorer la spécificité du scanner au stade précoce

« Ces résultats démontrent qu’une approche basée sur l’apprentissage machine utilisant des modèles de réseaux de neurones convolutifs est capable de distinguer le COVID-19 de la pneumopathie communautaire », écrivent les chercheurs. Un tel système, avancent-ils, pourrait imposer le scanner comme un outil de détection du COVID-19 au stade précoce de la contamination, quand le test RT-PCR manque encore de sensibilité.

Pas de comparaison avec l’influenza

L’étude comporte cependant quelques limites, précisent ses auteurs. Les données d’entraînement et de test ne comprennent notamment pas de cas de pneumonies d’origine virale autre que le coronavirus, telles que le virus influenza, qui pourraient avoir des caractéristiques d’imagerie similaires. L’autre faiblesse vient de la variété des réponses des poumons à la contamination par un virus, qui dépendent de l’âge du patient, de son état immunitaire ou encore de ses comorbidités.

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Li L., Qin L., Xu Z. et coll., « Artificial intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT », Radiology, 19 mars 2020, DOI : 10.1148/radiol.2020200905.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

18 Sep

16:18

Lunit, leader mondial de l’intelligence artificielle appliquée au diagnostic et au traitement du cancer, annonce dans un communiqué que ses solutions d’IA pour l’imagerie mammaire ont été sélectionnées dans le cadre du renouvellement du marché imagerie de l’Union des hôpitaux pour les achats (UniHA), contribuant ainsi à accélérer l’adoption de technologies de santé innovantes.

13:30

Les patients ont une opinion plutôt favorable de l’intervention de l’IA en médecine, indique une étude publiée dans le Journal of the American Medical Association (JAMA). Cependant, lorsque les patients sont atteints d'une maladie grave, ils ont alors une opinion moins favorable.

7:09

Dans un communiqué publié sur son site internet, la FNMR annonce un certain nombres d’actions pour le dépistage du cancer du sein. Ainsi, pour Octobre Rose, les radiologues sont invités à diffuser largement les différents visuels mis en place à cette occasion pour encourager les femmes à se faire dépister.
17 Sep

15:14

La TEP-TDM des récepteurs de la somatostatine a montré une sensibilité parfaite pour détecter les méningiomes intracrâniens dans une étude rétrospective incluant 8 077 examens. Les auteurs ont toutefois relevé un taux de faux positifs de 2,9 %.
Docteur Imago

GRATUIT
VOIR