Imagerie thoracique

Un système de deep learning prédit la survie de patients opérés d’un cancer du poumon

En extrayant des informations de scanners thoraciques préopératoires, des médecins coréens ont testé un modèle de deep learning capable de prédire la survie sans maladie de patients opérés d’un cancer du poumon.

icon réservé aux abonnésArticle réservé aux abonnés
Le 15/06/20 à 7:00, mise à jour hier à 14:14 Lecture 2 min.

Dans leurs constatations, les auteurs indiquent que le statut tabagique et les résultats du modèle d'apprentissage profond « étaient les seuls facteurs de pronostic indépendants de la survie sans maladie des patients après la résection chirurgicale d'un adénocarcinome de stade I ». © Hyungjin Kim et coll. / Radiological Society of North America

Une équipe de chercheurs coréens a développé un modèle d’apprentissage profond basé sur les données de scanner préopératoire qui permettrait de prédire la survie sans maladie de patients atteints d’un adénocarcinome pulmonaire traité par chirurgie. Cette étude rétrospective menée par Hyungjin Kim, radiologue à la faculté de médecine de l’université de Séoul, est parue au mois de mai dans la revue Radiology [1].

Deux sets de données pour l’entraînement et la validation

Pour ces travaux, les chercheurs se sont appuyés sur deux ensembles de données : le premier a été utilisé pour entraîner l’algorithme, le second pour la validation externe. Pour l'ensemble de données 1, les patients éligibles étaient ceux qui avaient subi au moins une lobectomie pour un cancer du poumon. « Au total, 800 patients atteints d'adénocarcinomes pulmonaires réséqués entre janvier 2009 et décembre 2015 ont été identifiés rétrospectivement par une recherche dans les dossiers médicaux électroniques, détaillent les au

Il vous reste 73% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Hyungjin Kim, Jin Mo Goo, Kyung Hee Lee et coll., « Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas », Radiology, 12 mai 2020, publication en ligne. DOI : 10.1148/radiol.2020192764.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

30 Jan

7:12

Avec leurs capacités à détecter le métastases, la TEP-TDM au PSMA et l'IRM corps entier ont le potentiel de modifier la prise en charge des patients avec un cancer de la prostate avancé, mais des essais prospectifs sont nécessaires avant de les recommander en routine clinique, conclut un article dans European Radiology.
29 Jan

16:21

Alain Luciani, PU-PH au GHU Henri-Mondor (94) a été élu futur président de la Société française de radiologie (SFR) pour le mandat 2027 - 2031 ce 29 janvier, annonce la SFR.

15:25

Une étude publiée dans JACR compare l’utilisation des examens d’imagerie chez des enfants en consultation externe dans les hôpitaux pédiatriques et non pédiatriques à partir de données Medicaid 2019. Elle montre que les hôpitaux non pédiatriques utilisent plus fréquemment les examens exposant aux radiations ionisantes, tels que les radiographies et scanners, tandis que les hôpitaux pédiatriques privilégient davantage l’échographie et l’IRM.  

13:18

Une étude publiée dans Emergency Radiology rapporte un cas d’hémorragie sous-arachnoïdienne avec anévrismes multiples, dans lequel l’imagerie conventionnelle ne permettait pas d’identifier l’anévrisme rompu. L’IRM de la paroi vasculaire a mis en évidence un rehaussement focal de l’anévrisme du sommet basilaire, permettant un traitement endovasculaire ciblé et soulignant l’intérêt de cette technique dans les situations diagnostiques complexes.  
Docteur Imago

GRATUIT
VOIR