Réseaux neuronaux convolutifs

Une précision diagnostique accrue pour distinguer l’obstruction gastro-intestinale dans une population pédiatrique

Une étude démontre que des modèles d’apprentissage profond sont efficaces en tant que systèmes d’aide à la décision pour la prise en charge des obstructions gastro-intestinales pédiatriques en radiographie abdominale.

icon réservé aux abonnésArticle réservé aux abonnés
Le 23/04/25 à 15:00, mise à jour le 13/05/25 à 15:39 Lecture 1 min.

Dans cette étude, une équipe de chercheurs a utilisé des réseaux neuronaux convolutifs (CNN) pour aider à diagnostiquer les obstructions gastro-intestinales (GI) chez les enfants, une pathologie pouvant entraîner de graves complications si elle n’est pas identifiée à temps (photo d'illustration). © Carla Ferrand

De chercheurs turcs ont évalué la performance de plusieurs réseaux neuronaux convolutifs (CNN) pour aider à diagnostiquer les obstructions gastro-intestinales (GI) sur des radiographies abdominales pédiatriques. Cette pathologie peut entraîner une nécrose intestinale, une perforation et même le décès si elle n’est pas prise en charge à temps, rappellent-ils dans la revue Diagnostic and Interventional Radiology [1].

Cinq modèles de CNN testés

Cinq modèles de CNN ayant fait leurs preuves en analyse d’images ont été testés : ResNet50, InceptionResNetV2, Xception, EfficientNetV2L et ConvNeXtXLarge. Un ensemble de données supplémentaire a ensuite été créé en appliquant un processus de recadrage automatique des images, afin de déterminer l’impact de la standardisation de la zone d’imagerie sur les performances du modèle.

Des taux de précision élevés

Au total, 540 images normales, 298 images de dilatation corrigée chirurgicalement et 314 de dilatation inflammatoire ont été utilisées. Les résultat

Il vous reste 60% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Ayaz E, Güçlü H, Oktay AB (2025) Diagnostic accuracy of convolutional neural network algorithms to distinguish gastrointestinal obstruction on conventional radiographs in a pediatric population. dir. https://doi.org/10.4274/dir.2025.242950.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.
Docteur Imago

GRATUIT
VOIR