Réseaux neuronaux convolutifs

Une précision diagnostique accrue pour distinguer l’obstruction gastro-intestinale dans une population pédiatrique

Une étude démontre que des modèles d’apprentissage profond sont efficaces en tant que systèmes d’aide à la décision pour la prise en charge des obstructions gastro-intestinales pédiatriques en radiographie abdominale.

icon réservé aux abonnésArticle réservé aux abonnés
Le 23/04/25 à 15:00, mise à jour le 13/05/25 à 15:39 Lecture 1 min.

Dans cette étude, une équipe de chercheurs a utilisé des réseaux neuronaux convolutifs (CNN) pour aider à diagnostiquer les obstructions gastro-intestinales (GI) chez les enfants, une pathologie pouvant entraîner de graves complications si elle n’est pas identifiée à temps (photo d'illustration). © Carla Ferrand

De chercheurs turcs ont évalué la performance de plusieurs réseaux neuronaux convolutifs (CNN) pour aider à diagnostiquer les obstructions gastro-intestinales (GI) sur des radiographies abdominales pédiatriques. Cette pathologie peut entraîner une nécrose intestinale, une perforation et même le décès si elle n’est pas prise en charge à temps, rappellent-ils dans la revue Diagnostic and Interventional Radiology [1].

Cinq modèles de CNN testés

Cinq modèles de CNN ayant fait leurs preuves en analyse d’images ont été testés : ResNet50, InceptionResNetV2, Xception, EfficientNetV2L et ConvNeXtXLarge. Un ensemble de données supplémentaire a ensuite été créé en appliquant un processus de recadrage automatique des images, afin de déterminer l’impact de la standardisation de la zone d’imagerie sur les performances du modèle.

Des taux de précision élevés

Au total, 540 images normales, 298 images de dilatation corrigée chirurgicalement et 314 de dilatation inflammatoire ont été utilisées. Les résultat

Il vous reste 60% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Ayaz E, Güçlü H, Oktay AB (2025) Diagnostic accuracy of convolutional neural network algorithms to distinguish gastrointestinal obstruction on conventional radiographs in a pediatric population. dir. https://doi.org/10.4274/dir.2025.242950.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

25 Août

15:00

7:00

La Société européenne d'informatique en imagerie médicale (EUSOMII) a publié des recommandations sur les métriques d'évaluation des solutions commerciales d'intelligence artificielle. Objectif : « assurer leur intégration sûre et effective dans la pratique clinique ».
22 Août

13:10

L’IA est capable d’identifier un risque de cancer du sein sur certaines mammographies de dépistage, même lorsque les radiologues ne détectent rien, indique une étude rétrospective. Elle pourrait ainsi contribuer à améliorer la qualité du dépistage, concluent les auteurs.

8:41

L'Hôpital américain de Paris est devenu le premier établissement privé français à s'équiper d'un scanner à comptage photonique, le NAEOTOM Alpha.Pro® de Siemens Healthineers, indique un communiqué de presse. Seulement six exemplaires sont actuellement installés en France dans des centres hospitaliers.
Docteur Imago

GRATUIT
VOIR