Conférence inaugurale

Comment l’intelligence artificielle pourrait répondre à la pandémie en radiologie

Lors de la conférence inaugurale des JFR, le 2 octobre, Eliot Siegel, pionnier américain de l’intelligence artificielle en imagerie médicale, a rappelé les impacts de la pandémie de COVID-19 en radiologie et le rôle que pourrait jouer l'IA à l’avenir.

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/10/20 à 7:00, mise à jour hier à 14:09 Lecture 4 min.

Lors des JFR 2020, Eliot Siegel était invité à s’exprimer sur deux questions : l’intelligence artificielle va-t-elle accompagner le travail du radiologue ? Va-t-elle se projeter dans l’ère post-COVID ? D. R.

L’intelligence artificielle reste plus que jamais un sujet d’intérêt pour l’imagerie médicale. Elle a fait l’objet d’une intervention lors de la conférence inaugurale des JFR, le 2 octobre 2020. Alain Luciani a invité Eliot Siegel, professeur de radiologie à l’école de médecine de l’université du Maryland (États-Unis), à s’exprimer sur deux questions : l’intelligence artificielle va-t-elle accompagner le travail du radiologue ? Va-t-elle se projeter dans l’ère post-COVID ?

La nouvelle boîte de pandore

Ce pionnier des systèmes d’archivage et de communication des images (PACS) débute par cette réflexion : « Cela me rappelle le début des années quatre-vingt-dix quand nous avons ouvert une boîte de pandore avec le PACS. J’ai l’impression de revivre la même chose avec l’intelligence artificielle en 2020. » Après avoir rappelé les craintes habituelles relayées par des personnalités, des médias et même les studios hollywoodiens selon lesquelles cette technologie pourrait remplacer les radiologu

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Kyono, Trent, et coll. « Improving Workflow Efficiency for Mammography Using Machine Learning ». Journal of the American College of Radiology, vol. 17, no 1, janvier 2020, p. 56‑63. org (Crossref), doi:10.1016/j.jacr.2019.05.012.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

7:30

Le Sénat a adopté le 19 novembre un amendement gouvernemental au PLFSS 2025 qui prévoit d'exonérer de cotisations pour l'assurance vieillesse les médecins en situation de cumul emploi-retraite qui exercent dans les zones sous-denses. La Caisse autonome de retraite des médecins français (CARMF) s'alarme dans un communiqué des conséquences de cette mesure.

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
Docteur Imago

GRATUIT
VOIR