Conférence inaugurale

Comment l’intelligence artificielle pourrait répondre à la pandémie en radiologie

Lors de la conférence inaugurale des JFR, le 2 octobre, Eliot Siegel, pionnier américain de l’intelligence artificielle en imagerie médicale, a rappelé les impacts de la pandémie de COVID-19 en radiologie et le rôle que pourrait jouer l'IA à l’avenir.

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/10/20 à 7:00, mise à jour hier à 15:12 Lecture 4 min.

Lors des JFR 2020, Eliot Siegel était invité à s’exprimer sur deux questions : l’intelligence artificielle va-t-elle accompagner le travail du radiologue ? Va-t-elle se projeter dans l’ère post-COVID ? D. R.

L’intelligence artificielle reste plus que jamais un sujet d’intérêt pour l’imagerie médicale. Elle a fait l’objet d’une intervention lors de la conférence inaugurale des JFR, le 2 octobre 2020. Alain Luciani a invité Eliot Siegel, professeur de radiologie à l’école de médecine de l’université du Maryland (États-Unis), à s’exprimer sur deux questions : l’intelligence artificielle va-t-elle accompagner le travail du radiologue ? Va-t-elle se projeter dans l’ère post-COVID ?

La nouvelle boîte de pandore

Ce pionnier des systèmes d’archivage et de communication des images (PACS) débute par cette réflexion : « Cela me rappelle le début des années quatre-vingt-dix quand nous avons ouvert une boîte de pandore avec le PACS. J’ai l’impression de revivre la même chose avec l’intelligence artificielle en 2020. » Après avoir rappelé les craintes habituelles relayées par des personnalités, des médias et même les studios hollywoodiens selon lesquelles cette technologie pourrait remplacer les radiologu

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Kyono, Trent, et coll. « Improving Workflow Efficiency for Mammography Using Machine Learning ». Journal of the American College of Radiology, vol. 17, no 1, janvier 2020, p. 56‑63. org (Crossref), doi:10.1016/j.jacr.2019.05.012.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

7:00

Une collaboration internationale de sociétés de radiologie thoracique a élaboré des recommandations pour harmoniser l’évaluation des anomalies pulmonaires résiduelles post-COVID-19. Elle préconise un scanner thoracique à faible dose chez les patients présentant des symptômes respiratoires persistants ou progressifs trois mois après l’infection, et recommande l’usage du glossaire de la Fleischner Society. Le terme « anomalie pulmonaire résiduelle post-COVID-19 » doit remplacer « anomalie pulmonaire interstitielle », pour décrire les anomalies pulmonaires au scanner après une pneumonie COVID-19.
06 Août

15:00

Une étude multicentrique, publiée par Academic Radiology, a évalué l’apport de l’intelligence artificielle (IA) dans la détection du cancer de la prostate sur IRM. L’assistance par IA a significativement amélioré la sensibilité des radiologues non experts (de 67,3 % à 85,5 %) sans compromettre la spécificité, tandis que l’IA seule a également montré une performance diagnostique élevée. Ces résultats suggèrent que l’IA peut renforcer l’efficacité du diagnostic des radiologues.

7:00

La pose de la première pierre de l’extension de la plateforme d’imagerie biomédicale Cyceron a lieu ce vendredi 20 juin 2025 sur le campus Jules Horowitz à Caen (Normandie), indique l'université de Caen.
05 Août

15:02

La Société de médecine nucléaire et d'imagerie moléculaire (SNMMI) publie ses recommandations pour la standardisation de la terminologie et des données en médecine nucléaire.
Docteur Imago

GRATUIT
VOIR