Conférence inaugurale

Comment l’intelligence artificielle pourrait répondre à la pandémie en radiologie

Lors de la conférence inaugurale des JFR, le 2 octobre, Eliot Siegel, pionnier américain de l’intelligence artificielle en imagerie médicale, a rappelé les impacts de la pandémie de COVID-19 en radiologie et le rôle que pourrait jouer l'IA à l’avenir.

icon réservé aux abonnésArticle réservé aux abonnés
Le 03/10/20 à 7:00, mise à jour aujourd'hui à 15:11 Lecture 4 min.

Lors des JFR 2020, Eliot Siegel était invité à s’exprimer sur deux questions : l’intelligence artificielle va-t-elle accompagner le travail du radiologue ? Va-t-elle se projeter dans l’ère post-COVID ? D. R.

L’intelligence artificielle reste plus que jamais un sujet d’intérêt pour l’imagerie médicale. Elle a fait l’objet d’une intervention lors de la conférence inaugurale des JFR, le 2 octobre 2020. Alain Luciani a invité Eliot Siegel, professeur de radiologie à l’école de médecine de l’université du Maryland (États-Unis), à s’exprimer sur deux questions : l’intelligence artificielle va-t-elle accompagner le travail du radiologue ? Va-t-elle se projeter dans l’ère post-COVID ?

La nouvelle boîte de pandore

Ce pionnier des systèmes d’archivage et de communication des images (PACS) débute par cette réflexion : « Cela me rappelle le début des années quatre-vingt-dix quand nous avons ouvert une boîte de pandore avec le PACS. J’ai l’impression de revivre la même chose avec l’intelligence artificielle en 2020. » Après avoir rappelé les craintes habituelles relayées par des personnalités, des médias et même les studios hollywoodiens selon lesquelles cette technologie pourrait remplacer les radiologu

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Kyono, Trent, et coll. « Improving Workflow Efficiency for Mammography Using Machine Learning ». Journal of the American College of Radiology, vol. 17, no 1, janvier 2020, p. 56‑63. org (Crossref), doi:10.1016/j.jacr.2019.05.012.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

31 Mar

16:00

22 % des médecins répondants à une enquête du Conseil de l'Ordre considèrent leur prise en charge des patients en situation de handicap comme insuffisante ou peu suffisante en raison du manque de temps, de moyens humains et matériels ou encore le manque de formation ou l'inadaptabilité des locaux. 35 % considèrent que l'accès aux soins des patients en situation de handicap est difficile.

13:00

Un décret publié le 19 mars détermine les modalités d'encadrement de l'activité de remise en bon état d'usage de certaines catégories de dispositifs médicaux à usage individuel. La liste des dispositifs concernés sera définie par arrêté.

7:30

La Haute Autorité de santé (HAS) a publié le 20 mars une mise à jour de son Guide pour l'évaluation des infrastructures de simulation en santé, élaborée avec la Société francophone de simulation en santé. Ce document s'adresse aux structures de simulation et aux plateformes de simulation en santé qui souhaitent s'inscrire dans une démarche d'amélioration continue de la qualité, indique la HAS.
28 Mar

16:37

La SFR met en place l’application mobile SFR-JUISCI permettant aux utilisateurs d’accéder aux récentes recherches en radiologie. L’appli est à télécharger via la lien : https://lnkd.in/eW4i956c
Docteur Imago

GRATUIT
VOIR