Intelligence artificielle

Des algorithmes performants mais encore discrets

Au Congrès européen de radiologie, une session du 27 février s’est intéressée aux performances de l’apprentissage profond, à la façon dont il peut s’intégrer à la pratique des radiologues et aux domaines où tout reste à jouer.

icon réservé aux abonnésArticle réservé aux abonnés
Le 28/02/19 à 16:00, mise à jour hier à 14:22 Lecture 2 min.

Eliot Siegel constate que de nombreux algorithmes montrent des résultats prometteurs mais qu'ils sont encore peu disponibles au niveau des PACS. © C. F.

Au fil des congrès, la popularité de l’intelligence artificielle ne se dément pas et l’ECR 2019 ne déroge pas à la règle. Le 27 février, la session « L’intelligence artificielle pilotée par les radiologues » s’est tenue dans une salle pleine à craquer.

Le deep learning plus rapide que les CAD

Les intervenants ont évoqué les avantages et les limites des technologies d’IA. Eliot Siegel, radiologue au Centre médical de l’université du Maryland, à Baltimore (États-Unis), a décrit les principaux atouts de l’apprentissage profond (deep learning) appliqué à la radiologie : « C’est une méthode plus rapide que les techniques de diagnostic assisté par ordinateur (computer-aided diagnosis, CAD) traditionnelles car l’algorithme émerge directement des données elles-mêmes. La durée de développement des algorithmes se compte en quelques semaines plutôt qu’en mois ou en années. »

Les réseaux convolutifs surpassent l’œil humain pour la texture des images

En matière d’analyse d’images, Eliot Siegel constate

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.
Docteur Imago

GRATUIT
VOIR