Intelligence artificielle

Comment limiter les biais dans la gestion des données de radiologie en apprentissage automatique ?

En apprentissage automatique, la gestion des données représente une étape cruciale dans le développement de nouveaux algorithmes. Un article publié le 24 août dans Radiology : Artificial Intelligence résume les différents biais qui peuvent peser sur le traitement des données au début du développement d'une nouvelle IA, et les moyens d'y faire face.

icon réservé aux abonnésArticle réservé aux abonnés
Le 20/09/22 à 15:00, mise à jour hier à 14:09 Lecture 3 min.

Plusieurs risques de biais menacent la gestion des données radiologiques en amont de la création d'une IA, que ce soit au moment de leur sélection, de leur vérification ou de leur affectation aux différentes étapes du développement (photo d'illustration). Mike MacKenzie | CC BY 2.0 (no changes made)

Quels biais menacent la conception de bonnes IA basées sur l'apprentissage automatique en radiologie ? Une équipe de chercheurs étasuniens de la Mayo Clinic à Rochester (Minnesota) a publié le 24 août dans Radiology : Artificial Intelligence un inventaire des biais propres à la gestion des données radiologiques en amont de la création d'une IA, ainsi que de leurs antidotes [1]. Ce papier constitue la première partie d'une série de trois articles destinés à vulgariser auprès des radiologues les biais à prendre en compte dans le développement d'une IA utilisant l'apprentissage automatique.

Quatre étapes de gestion des données à contrôler

Par gestion des données, les auteurs entendent tous les processus impliquant la manipulation de données radiologiques entre l'idée initiale de créer une nouvelle IA et le développement du modèle d'apprentissage automatique correspondant. Quatre étapes successives relèvent de la gestion de données : la collecte d'un jeu de données radiologiques, l'analyse d

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Rouzrokh P., Khosravi B., Faghani S. et coll., « Mitigating bias in radiology machine learning : 1. Data Handling », Radiology : Artificial Intelligence, août 2022, vol. 4, n° 5. DOI : t10.1148/ryai.210290.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

15 Déc

7:30

Le prix Galien, qui récompense l'innovation en santé, a été remis notamment cette année à Michel Azizi, professeur de cardiologie à l'hôpital européen Georges-Pompidou, pour ses travaux sur la dénervation rénale pour le traitement de l'hypertension artérielle, et à la startup echOpen, qui développe un échographe portatif en partenariat avec l'AP-HP.

13:55

Les Hôpitaux civils de Colmar ont signalé un évènement de radioprotection après que deux praticiens en radiologie interventionnelle ont reçu des doses significatives de rayonnements aux mains, l’un dépassant légèrement la limite annuelle réglementaire. L’ASNR classe l’incident au niveau 1 de l’échelle INES et vérifie la mise en place des mesures correctives, rappelant l’importance du port systématique des dosimètres, indique l'institution.

7:53

Des chercheurs ont évalué l’incidence des cancers du poumon diagnostiqués dans les deux années suivant des recommandations émises par des radiologues pour un scanner thoracique dans les comptes rendus de scanner et d’IRM de la tête et du cou. Ils suggèrent que la fréquence de ces recommandations devrait être considérablement réduite (étude).
Docteur Imago

GRATUIT
VOIR