Intelligence artificielle

Comment limiter les biais dans la gestion des données de radiologie en apprentissage automatique ?

En apprentissage automatique, la gestion des données représente une étape cruciale dans le développement de nouveaux algorithmes. Un article publié le 24 août dans Radiology : Artificial Intelligence résume les différents biais qui peuvent peser sur le traitement des données au début du développement d'une nouvelle IA, et les moyens d'y faire face.

icon réservé aux abonnésArticle réservé aux abonnés
Le 20/09/22 à 15:00, mise à jour aujourd'hui à 14:10 Lecture 3 min.

Plusieurs risques de biais menacent la gestion des données radiologiques en amont de la création d'une IA, que ce soit au moment de leur sélection, de leur vérification ou de leur affectation aux différentes étapes du développement (photo d'illustration). Mike MacKenzie | CC BY 2.0 (no changes made)

Quels biais menacent la conception de bonnes IA basées sur l'apprentissage automatique en radiologie ? Une équipe de chercheurs étasuniens de la Mayo Clinic à Rochester (Minnesota) a publié le 24 août dans Radiology : Artificial Intelligence un inventaire des biais propres à la gestion des données radiologiques en amont de la création d'une IA, ainsi que de leurs antidotes [1]. Ce papier constitue la première partie d'une série de trois articles destinés à vulgariser auprès des radiologues les biais à prendre en compte dans le développement d'une IA utilisant l'apprentissage automatique.

Quatre étapes de gestion des données à contrôler

Par gestion des données, les auteurs entendent tous les processus impliquant la manipulation de données radiologiques entre l'idée initiale de créer une nouvelle IA et le développement du modèle d'apprentissage automatique correspondant. Quatre étapes successives relèvent de la gestion de données : la collecte d'un jeu de données radiologiques, l'analyse d

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Rouzrokh P., Khosravi B., Faghani S. et coll., « Mitigating bias in radiology machine learning : 1. Data Handling », Radiology : Artificial Intelligence, août 2022, vol. 4, n° 5. DOI : t10.1148/ryai.210290.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

22 Déc

16:04

Varian, filiale de Siemens Healthineers et l'entreprise pharmaceutique Telix Pharmaceutical Limited, annoncent une collaboration stratégique dans le domaine des traitements par radiopharmaceutiques et radiothérapie.

13:06

La Société française de radiologie annonce le décès du professeur Thierry de Baere, chef du service de radiologie interventionnelle du centre de lutte contre le cancer Gustave-Roussy (94). Nous adressons nos condoléances à sa famille et ses proches.

7:13

Une étude publiée dans European Journal of Nuclear Medicine and Molecular Imaging montre que l’évaluation de la réponse thérapeutique du carcinome hépatocellulaire (CHC) par 68Ga-PSMA PET offre une concordance interprétative presque parfaite entre lecteurs, surpassant nettement les critères CT/MRI, notamment après immunothérapie. Ces résultats ouvrent la voie à la validation de PSMA PET comme outil fiable pour guider la prise en charge et orienter les essais thérapeutiques futurs.
19 Déc

15:09

Face à l'adoption du PLFSS par l'Assemblée national le 16 décembre dernier, les syndicats de médecins appellent à une mobilisation générale de la médecine libérale début janvier et à une grande manifestation à Paris, le samedi 10 janvier pour dénoncer des mesures qu'ils jugent dangereuses pour le système de santé et la santé des citoyens.
Docteur Imago

GRATUIT
VOIR