Scanner thoracique

Une IA pour diagnostiquer les lésions Covid à très basse dose

Une équipe de chercheurs suisses et iraniens a entraîné un algorithme d’apprentissage profond à prédire des images « dose entière » à partir d’examens de scanner thoracique ultra basse dose de patients Covid-19. Le modèle obtient des résultats « appropriés », avec certaines limites.

icon réservé aux abonnésArticle réservé aux abonnés
Le 16/03/21 à 16:30, mise à jour hier à 14:13 Lecture 2 min.

Les images ultra basse dose (au centre) sont d’une qualité « insuffisante » pour le diagnostic mais les images « dose entière » reconstruites par l’algorithme à partir de ces dernières (à droite) obtiennent pour la plupart un score de qualité de « bon » à « excellent » et sont « appropriées pour la tâche demandée ». Les images « dose entière » natives (à droite) obtiennent le meilleur score. © Shiri I. et coll.

Dès les premières semaines de la pandémie de Covid-19, le scanner thoracique s’est présenté comme une solution pertinente pour le diagnostic et le suivi des patients. Ce rôle de premier plan pose toutefois la question de la radioprotection, soulignent Isaac Shiri et Azadeh Akhavanallaf, respectivement chercheurs à l’hôpital universitaire de Genève, en Suisse, et à la faculté de médecine de Téhéran, en Iran, dans la revue European Radiology. « Le scanner reste la première cause médicale d’exposition aux rayonnements ionisants, malgré les progrès techniques », écrivent-ils dans un article paru en début d’année [1].

Des images ultra basse dose simulées

Pour résoudre ce problème, ils ont collecté, avec leurs confrères, 1 141 examens de scanners, dont 312 de patients positifs au test RT-PCR, issus de 3 centres. En utilisant des outils statistiques et mathématiques, ainsi qu’une base d’images de référence, ils ont dégradé la qualité de ces examens pour simuler des images acquises à très basse

Il vous reste 72% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Shiri I., Akhavanallaf A., Sanaat A. et coll., « Ultra-low-dose chet CT imaging of COVID-19 patients using a deep residual neural network », European Radiology, 2021, vol. 31, p. 1420-1431. DOI : 10.1007/s00330-020-07225-6.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

06 Fév

13:06

Une étude publiée dans Radiology montre que le compte rendu structuré améliore l’efficacité des radiologues en réduisant le temps de rédaction et en recentrant l’attention visuelle sur l’image, par rapport au texte libre. L’ajout de l’intelligence artificielle augmente la précision diagnostique.

7:30

Une étude rétrospective montre que le score Node-RADS basé sur l’IRM offre une excellente précision diagnostique pour la détection des métastases ganglionnaires chez les patients atteints de cancer du rectum, avec une performance supérieure aux critères de taille et aux comptes rendus IRM classiques.
05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.

15:42

La FDA a autorisé RevealAI-Lung, un outil d’intelligence artificielle développé par RevealDx pour détecter et caractériser les nodules pulmonaires sur les scanners, en fournissant aux radiologues un score de probabilité de malignité.

7:14

Les résultats d'une étude soulignent la persistance des inégalités homme/femme dans le financement de la recherche dans la radiologie. "Ce déséquilibre risque de freiner l'innovation et de limiter la diversité des perspectives qui orienteront les recherches futures", signalent les auteurs.
Docteur Imago

GRATUIT
VOIR