Apprentissage machine

Nvidia développe des images pathologiques de synthèse en IRM

Le constructeur de cartes graphiques a montré, lors d’un symposium, un algorithme qui met en concurrence deux réseaux neuronaux pour générer des images réalistes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/02/19 à 12:00, mise à jour aujourd'hui à 15:23 Lecture 1 min.

Les chercheurs ont pu introduire dans les images synthétiques des niveaux élevés de variation. Exemple d'images générées. D. R.

Pour développer un apprentissage automatique en imagerie médicale, plusieurs défis sont à relever : il faut faire avec la faible incidence des résultats pathologiques et gérer les restrictions liées à la protection des données du patient. Lors d’un symposium en Espagne, en septembre dernier, Nvidia, le constructeur de cartes graphiques, a proposé une méthode pour créer des clichés d’imagerie IRM de synthèse.

Deux réseaux neuronaux

Pour la développer, les ingénieurs de la firme ont extrait des clichés de deux bases de données : l’Alzheimer’s Diseases Neuroimaging initiative et la série d’images tumorales du Mulmodal Brain Tumor Image Segmentation Benchmark. Ils ont employé une méthode appelée « Generative Adversarial Network ». Il s’agit d’un algorithme mis en œuvre par un système de deux réseaux neuronaux en concurrence l'un avec l'autre afin de générer des images ayant de nombreuses caractéristiques réalistes.

Amélioration des performances

Les chercheurs ont pu introduire des niveaux élev

Il vous reste 33% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Avatar photo

Benjamin Bassereau

Directeur de la rédaction BOM Presse Clichy

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

15 Juil

16:00

Un « potentiel prometteur » des modèles de langages dans les classifications radiologiques. Selon une étude parue le 7 juillet, ces modèles ont montré une justesse dans la classification générale des fractures, mais des limites de classifications détaillées confirme le besoin de validation par les professionnels de santé avant une véritable utilisation.

13:54

PANCANAI, un modèle d’intelligence artificielle, montre une haute sensibilité dans la détection du cancer du pancréas sur les scanners, dans une large étude rétrospective de cohorte, publiée dans la revue Investigate Radiology.

7:30

En Australie et Nouvelle Zélande, les radiologues en imagerie oncologique préfèrent utiliser des rapports structurés sans terminologies pré-écrite. Selon une étude publiée dans JMIRO, l’utilisation des rapports plus structuré est plus importante dans les pays ou la pratique de l'imagerie oncologique est plus importante et le personnel mieux formé.
11 Juil

17:17

D'après un nouvelle étude menée par une équipe germano-américaine et publié par European Journal of Radiology, la réussite de la mise en place de l'IA nécessite une organisation solide et une équipe de surveillance aguerri pour superviser l'évolution, le déploiement et la maintenance continue des algorithmes.

16:13

Selon une étude publiée dans Academic Radiology, des QCM générés par ChatGPT comme outil de renforcement des connaissances ont obtenu des taux de réussite très proche de ceux de radiologues expérimentés. Malgré une qualité jugée assez proche, une partie des étudiants ont reconnu les QCM écrits par des radiologues.
Docteur Imago

GRATUIT
VOIR