À Bordeaux, une équipe du CNRS menée par Pierrick Coupé s’intéresse aux problématiques de la sclérose en plaques (SEP) et perfectionne ses outils d’apprentissage profond (deep learning) pour la neuro-imagerie. Reda Abdellah Kamraoui, doctorant au Laboratoire bordelais de recherche en informatique (LaBRI), travaille sur l’automatisation de la segmentation des lésions de SEP et l’extraction de biomarqueurs : « L’automatisation de ces tâches permet de faciliter le travail des neuroradiologues et de leur faire gagner du temps, souligne-t-il. Le suivi des patients atteints de SEP est important pour vérifier que le traitement fonctionne. Avoir des biomarqueurs tels que les volumes lésionnels ou le nombre de nouvelles lésions permet de suivre l’évolution de la maladie. »
Développer des modèles plus performants
Les solutions existantes se basent sur des techniques d’apprentissage qui manquent parfois de précision et ne sont pas généralisables sur des données qui n’ont pas été vues lors de l’entr
Discussion
Aucun commentaire
Commenter cet article