Recherche en neuro-imagerie

Le CNRS affûte ses outils d’IA pour l’imagerie de la SEP

Le Laboratoire bordelais de recherche en informatique (LaBRI) développe des solutions d’apprentissage profond pour l’imagerie de la sclérose en plaques. Après la détection automatique des lésions, les chercheurs travaillent sur la prédiction du score de sévérité de la maladie.

icon réservé aux abonnésArticle réservé aux abonnés
Le 28/06/22 à 15:00, mise à jour aujourd'hui à 15:14 Lecture 3 min.

Les solutions de deep learning développées par le laboratoire LaBRI pour la SEP sont accessibles sur la plateforme en ligne volBrain. © LaBRI/VolBrain

À Bordeaux, une équipe du CNRS menée par Pierrick Coupé s’intéresse aux problématiques de la sclérose en plaques (SEP) et perfectionne ses outils d’apprentissage profond (deep learning) pour la neuro-imagerie. Reda Abdellah Kamraoui, doctorant au Laboratoire bordelais de recherche en informatique (LaBRI), travaille sur l’automatisation de la segmentation des lésions de SEP et l’extraction de biomarqueurs : « L’automatisation de ces tâches permet de faciliter le travail des neuroradiologues et de leur faire gagner du temps, souligne-t-il. Le suivi des patients atteints de SEP est important pour vérifier que le traitement fonctionne. Avoir des biomarqueurs tels que les volumes lésionnels ou le nombre de nouvelles lésions permet de suivre l’évolution de la maladie. »

Développer des modèles plus performants

Les solutions existantes se basent sur des techniques d’apprentissage qui manquent parfois de précision et ne sont pas généralisables sur des données qui n’ont pas été vues lors de l’entr

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

15 Juil

16:00

Un « potentiel prometteur » des modèles de langages dans les classifications radiologiques. Selon une étude parue le 7 juillet, ces modèles ont montré une justesse dans la classification générale des fractures, mais des limites de classifications détaillées confirme le besoin de validation par les professionnels de santé avant une véritable utilisation.

13:54

PANCANAI, un modèle d’intelligence artificielle, montre une haute sensibilité dans la détection du cancer du pancréas sur les scanners, dans une large étude rétrospective de cohorte, publiée dans la revue Investigate Radiology.

7:30

En Australie et Nouvelle Zélande, les radiologues en imagerie oncologique préfèrent utiliser des rapports structurés sans terminologies pré-écrite. Selon une étude publiée dans JMIRO, l’utilisation des rapports plus structuré est plus importante dans les pays ou la pratique de l'imagerie oncologique est plus importante et le personnel mieux formé.
11 Juil

17:17

D'après un nouvelle étude menée par une équipe germano-américaine et publié par European Journal of Radiology, la réussite de la mise en place de l'IA nécessite une organisation solide et une équipe de surveillance aguerri pour superviser l'évolution, le déploiement et la maintenance continue des algorithmes.

16:13

Selon une étude publiée dans Academic Radiology, des QCM générés par ChatGPT comme outil de renforcement des connaissances ont obtenu des taux de réussite très proche de ceux de radiologues expérimentés. Malgré une qualité jugée assez proche, une partie des étudiants ont reconnu les QCM écrits par des radiologues.
Docteur Imago

GRATUIT
VOIR