Détection opportuniste

Un modèle d’apprentissage profond repère le diabète de type 2 sur des radiographies thoraciques

Dans une étude parue le 7 juillet dans Nature Communications, des chercheurs américains ont développé une intelligence artificielle capable de détecter de manière incidente le diabète de type 2 à partir d'une radiographie thoracique. Testée sur une cohorte prospective, l'IA a atteint une aire sous la courbe ROC de 0,84.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/09/23 à 17:00 Lecture 3 min.

Le modèle d'apprentissage profond a repéré le diabète de type 2 avec une aire sous la courbe ROC de 0,84 dans la cohorte prospective. © Pyrros et coll. | Nature Communications

Le diabète de type 2 sera-t-il à l'avenir un incidentalome comme un autre ? C'est ce que semble suggérer une étude américaine parue début juillet dans Nature Communications [1]. Maladie multifactorielle en progression dans les pays développés avec une prévalence française estimée à 5 %, l'ampleur réelle du diabète de type 2 est difficile à évaluer : de fait, selon l'Inserm, 20 à 30 % des adultes diabétiques ne sont pas diagnostiqués.

Une maladie précoce difficile à repérer

Si le taux d’hémoglobine glyquée et la mesure de la glycémie à jeun posent le diagnostic, il reste difficile de déterminer quels sujets sont susceptibles de présenter un diabète de type 2 pour les orienter vers un test diagnostique, notamment à un stade précoce. Des chercheurs américains ont donc eu l'idée d'employer un modèle d'apprentissage profond afin de détecter les patients à risque de diabète de type 2 de manière opportuniste sur des radiographies thoraciques.

Entraînement sur 153 168 radiographies de patie

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Pyrros A., Borstelmann S. M., Mantravadi R. et coll., « Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs », Nature Communications, 7 juillet 2023. DOI : 10.1038/s41467-023-39631-x.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

01 Août

15:00

Fujifilm Sonosite a lancé la sonde à ultra-haute fréquence pour l’échographie au point d’intervention, UHF46-20. Selon le constructeur, cette sonde de 46 MHz offre une résolution de haute qualité pour les nerfs et les vaisseaux superficiels.

7:37

Ce vendredi 1er août, c'est la journée mondiale du cancer du poumon. L’association Patients en réseau a créé Mon réseau cancer du poumon, une communauté en ligne gratuite, anonyme, bienveillante et sécurisée, où les patients et les proches peuvent échanger avec dautres personnes concernées.
31 Juil

14:36

Le développement rapide de la médecine nucléaire offre de nombreuses opportunités sans précédentes pour améliorer la prise en charge des patients, indique une étude parue dans le Journal of Nuclear Medecine. Sa croissance engendre également des défis importants à relever.

7:09

La Société Française de Radiologie organise le congrès JFR Urgences les 26 et 27 mars 2026 à Marseille. Cette édition mettra à l’honneur la radiologie des urgences (agenda).
Docteur Imago

GRATUIT
VOIR