Détection opportuniste

Un modèle d’apprentissage profond repère le diabète de type 2 sur des radiographies thoraciques

Dans une étude parue le 7 juillet dans Nature Communications, des chercheurs américains ont développé une intelligence artificielle capable de détecter de manière incidente le diabète de type 2 à partir d'une radiographie thoracique. Testée sur une cohorte prospective, l'IA a atteint une aire sous la courbe ROC de 0,84.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/09/23 à 17:00 Lecture 3 min.

Le modèle d'apprentissage profond a repéré le diabète de type 2 avec une aire sous la courbe ROC de 0,84 dans la cohorte prospective. © Pyrros et coll. | Nature Communications

Le diabète de type 2 sera-t-il à l'avenir un incidentalome comme un autre ? C'est ce que semble suggérer une étude américaine parue début juillet dans Nature Communications [1]. Maladie multifactorielle en progression dans les pays développés avec une prévalence française estimée à 5 %, l'ampleur réelle du diabète de type 2 est difficile à évaluer : de fait, selon l'Inserm, 20 à 30 % des adultes diabétiques ne sont pas diagnostiqués.

Une maladie précoce difficile à repérer

Si le taux d’hémoglobine glyquée et la mesure de la glycémie à jeun posent le diagnostic, il reste difficile de déterminer quels sujets sont susceptibles de présenter un diabète de type 2 pour les orienter vers un test diagnostique, notamment à un stade précoce. Des chercheurs américains ont donc eu l'idée d'employer un modèle d'apprentissage profond afin de détecter les patients à risque de diabète de type 2 de manière opportuniste sur des radiographies thoraciques.

Entraînement sur 153 168 radiographies de patie

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Pyrros A., Borstelmann S. M., Mantravadi R. et coll., « Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs », Nature Communications, 7 juillet 2023. DOI : 10.1038/s41467-023-39631-x.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

17 Sep

15:14

La TEP-TDM des récepteurs de la somatostatine a montré une sensibilité parfaite pour détecter les méningiomes intracrâniens dans une étude rétrospective incluant 8 077 examens. Les auteurs ont toutefois relevé un taux de faux positifs de 2,9 %.

13:14

La première édition des rencontres nationales des centres de thrombectomie de Mention A (CMA 2026) aura lieu les 22 et 23 janvier 2026, au Mercure La Rochelle Vieux Port.

7:30

Aux États-Unis, les hôpitaux et les centres d'imagerie adossés à des fonds de capital-investissement (private equity) facturent leurs prestations d'imagerie à des tarifs moyens respectivement plus élevés de 43 % et 15,9 % que les cabinets indépendants, selon une enquête à lire dans JACR. Ces tarifs sont négociés avec les compagnies d'assurance.
16 Sep

15:39

366 praticiens de l’AP-HP, dont 33 radiologues et 18 médecins nucléaires, étaient signataires d’un contrat d’activité libérale en cours en 2023, selon un rapport disponible en ligne. Un nombre stable depuis une dizaine d’années. Par rapport à 2022, le volume d’activité libérale progresse de 19 % et le montant des honoraires de 5,1 %.
Docteur Imago

GRATUIT
VOIR