Imagerie thoracique

L’intelligence artificielle voit la tuberculose sur les radios des poumons

Des chercheurs américains ont mis au point un système d’intelligence artificielle capable de délivrer un diagnostic de tuberculose à partir de radiographies pulmonaires. Une avancée importante pour les pays en voie de développement, où cette pathologie est encore très présente.

icon réservé aux abonnésArticle réservé aux abonnés
Le 23/10/17 à 7:00, mise à jour aujourd'hui à 14:13 Lecture 1 min.

Testé sur 150 cas, le programme d'intelligence artificielle ne s'est trompé que 13 fois. Ici, la tuberculose a été detectée dans la zone rouge, au sommet du poumon gauche. © Paras Lakhani

Cela se passe aux États-Unis, à Philadelphie. Paras Lakhani, radiologue à l'hôpital universitaire Thomas Jefferson, et son équipe ont travaillé sur un modèle d’intelligence artificielle capable de reconnaître la tuberculose sur les radiologies pulmonaires de patients. Le dispositif a été pensé « comme un cerveau », expliquent-ils dans un article de la revue Radiology [1].

99 % de précision

Pour le développer, les chercheurs lui ont fourni une base de données de 1 007 images radiologiques de patients, malades ou non. Ils l’ont ensuite testé sur 150 cas afin d’évaluer son degré de réussite. L’intelligence artificielle ne s’est trompée que 13 fois. Et si l’on couple ce diagnostic avec celui d’un radiologue, la précision du modèle atteint presque les 99 %.

Combattre la tuberculose dans les pays en développement

Selon l’Organisation mondiale de la santé, la tuberculose est l'une des 10 principales causes de décès dans le monde. En 2016, elle a touché plus de 10 millions de personnes et entraîné

Il vous reste 32% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Sihem Boultif

Bibliographie

    1. Lakhani, P., « Deep Learning at Chest Radiography : Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks », Radiology, août 2017, vol. 284, n° 2. DOI : 1148/radiol.2017162326

Discussion

2 commentaires

Commenter cet article

Laisser un commentaire

Le fil Docteur Imago

22 Nov

14:39

La découverte fortuite d’anciens accidents vasculaires cérébraux lors d'examens de scanner permettrait aux cliniciens de mettre en place des mesures qui pourraient bénéficier à 100 000 à 200 000 patients par an aux États-Unis pour prévenir de futurs AVC (étude).

7:30

Le Sénat a adopté le 19 novembre un amendement gouvernemental au PLFSS 2025 qui prévoit d'exonérer de cotisations pour l'assurance vieillesse les médecins en situation de cumul emploi-retraite qui exercent dans les zones sous-denses. La Caisse autonome de retraite des médecins français (CARMF) s'alarme dans un communiqué des conséquences de cette mesure.

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.
Docteur Imago

GRATUIT
VOIR