Intelligence artificielle

L’apport du deep learning pour segmenter les trabéculations en IRM cardiaque

Des radiologues et des informaticiens ont développé un outil de segmentation automatique des trabéculations cardiaques. L’outil présenterait de meilleures performances que l’humain en termes de reproductibilité.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/01/21 à 16:00, mise à jour hier à 15:13 Lecture 3 min.

Image d'IRM, segmentation manuelle dite « ground-truth », puis segmentation des trabéculations produite automatiquement par l'algorithme (10 secondes). © Axel Bartoli et coll.

Une étude multicentrique rétrospective française s’est intéressée aux performances de l'apprentissage profond (deep learning) pour mesurer et segmenter les trabéculations en IRM cardiaque. L’équipe de recherche a publié ses travaux au mois de novembre dans Radiology : Artificial Intelligence [1].

Un besoin d’outil de précision

Les chercheurs sont partis du constat que la mesure des trabéculations cardiaques devait s’appuyer sur des critères précis afin de mieux faire la part des choses : « À l’heure actuelle, quand on interprète une IRM cardiaque, on dit de façon un peu subjective que le patient présente des trabéculations, sans véritablement déterminer s’il y a un excès ou si cela reste dans les limites de la normale », expose Axel Bartoli, radiologue à la Timone (Assistance publique - Hôpitaux de Marseille) et auteur principal de l’étude. Ils ont donc développé un algorithme de deep learning pour opérer des segmentations et des mesures automatiques, et dépasser l'évaluation visuelle :

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Bartoli A., Fournel J., Bentatou Z. et coll., « Deep-Learning based automated segmentation of the left ventricular trabeculations and myocardium on cardiac MR images: a feasibility study », Radiology: Artificial Intelligence, novembre 2020. DOI : 10.1148/ryai.2020200021.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

10 Sep

13:13

Un sondage de l'Association canadienne des radiologues (CAR) sur la participation aux RCP rapporte des difficultés récurrentes telles que l'ajout de cas de dernière minute, le manque de temps de préparation, les obstacles technologiques et l'absence de rémunération (étude).  

7:09

Le scanner thoracique basse dose pourrait être une alternative au scanner abdominal pour la segmentation volumique du foie dans la prise en charge de la stéatose hépatique (étude).
09 Sep

15:00

L'interprétation assistée par intelligence artificielle des scanners de dépistage du cancer du poumon peut améliorer le rendement quand les volumes d'examens sont importants mais devrait servir d'outil d'aide à la décision plutôt que de substitut au radiologue expert, concluent dans Radiography des chercheurs du Fatima College of Health Science, à Abu Dhabi.

12:36

Chez les patients atteints de sténose athéroscléreuse intracrânienne la réalisation d'une thérapie endovasculaire (angioplastie, etc.) en complément de la thérapie médicale conventionnelle aggrave les risques de mortalité et d'AVC, conclut une méta-analyse présentée dans Neuroradiology.

7:35

Le brain age gap, la différence entre l'âge chronologique et l'âge réel du cerveau mesuré par diverses techniques de neuro-imagerie, pourrait être un marqueur utile pour le suivi des maladies neurodégénératives, estiment des chercheurs allemands dans JNM.
Docteur Imago

GRATUIT
VOIR