Scanner thoracique

Dépister le cancer du poumon pour prédire la mortalité cardiovasculaire

Des chercheurs néerlandais ont entraîné un système d'apprentissage profond sur des images de scanner thoracique de dépistage de cancer du poumon. Ils ont ainsi développé une méthode automatique qui permettrait de prédire en temps réel la mortalité à 5 ans liée à une pathologie cardiovasculaire.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/04/21 à 7:00, mise à jour aujourd'hui à 14:11 Lecture 2 min.

Grâce aux informations contenues dans un scanner thoracique basse dose réalisé pour un dépistage du cancer du poumon, un système de deep learning pourrait prédire en moins d’une seconde le risque de décès lié à une pathologie cardiovasculaire à 5 ans. © De Vos et coll./RSNA2021

Grâce aux informations contenues dans un scanner thoracique basse dose réalisé pour un dépistage du cancer du poumon, un système de deep learning (apprentissage profond) pourrait prédire le risque de décès lié à une pathologie cardiovasculaire à 5 ans. Telle est la conclusion d’une étude publiée dans la revue Radiology : Cardiothoracic Imaging le 15 avril.

5 000 scanners de l'étude NLST

Pour aboutir à ce résultat, le chercheur Bob D. de Vos et ses collègues des hôpitaux universitaires d’Amsterdam et d’Utrecht (Pays-Bas) ont réalisé une étude rétrospective qui a inclus 5 564 participants ayant passé un scanner basse dose dans le cadre de l’essai NLST (National Lung Screening Trial) entre août 2002 et avril 2004. Les patients ont été suivis jusqu'en décembre 2009.

Un réseau entraîné sur 6 types de calcifications

Le modèle de prédiction a été entraîné avec les données de 4 451 participants (âge médian 61 ans ; 37.9 % de femmes) puis testé avec les données de 1 113 sujets.  « Le réseau d’appre

Il vous reste 73% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. De Vos B. D., Lessmann N., de Jong P. A. et coll., « Deep learning-quantified calcium scores for automatic cardiovascular mortality prediction at lung screening low-dose CT », Radiology : Cardiothoracic Imaging, avril 2021. DOI : 10.1148/ryct.2021190219. Publication en ligne.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Jan

16:11

Une étude publiée dans BMC Urology a évalué la capacité de plusieurs grands modèles de langage à classer des comptes rendus d’IRM de la prostate selon le système PI-RADS v2.1. Le modèle GPT-o1 montre la meilleure concordance avec les radiologues, mais tous les modèles présentent des limites pour les lésions PI-RADS 3.

13:08

Chez les patients atteints d'occlusion aiguë des grands vaisseaux (LVO) de l’ACM et de sténose de l’artère intracrânienne sous-jacente traitée par stent de secours, l’administration préalable d’une thrombolyse intraveineuse n’est pas associée à une augmentation du risque d’hémorragie intracrânienne symptomatique ni de la mortalité à 90 jours (étude).

7:30

Un modèle de classification ternaire radiologique a obtenu des performances diagnostiques « excellentes » pour différencier les lésions pulmonaires sur des images de scanner, selon des résultats publiés dans Radiology.
08 Jan

15:17

Des chercheurs ont introduit un nouveau marqueur tumoral IRM appelé « signe sombre-clair-obscur » et suggèrent qu’il peut aider à prédire la métastase des ganglions lymphatiques chez les patients atteints d’un cancer rectal, selon une étude publiée dans Radiology.
Docteur Imago

GRATUIT
VOIR