Intelligence artificielle

À Gustave-Roussy, un score maison prédit l’évolution des patients Covid

Le score AI-severity combine 5 variables cliniques et biologiques et l’analyse des examens de scanner thoracique par un algorithme d’apprentissage profond pour évaluer la gravité de l’atteinte pulmonaire liée à la Covid-19 et prédire son évolution.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/02/21 à 8:00, mise à jour aujourd'hui à 15:12 Lecture 3 min.

AI-severity combine les informations extraites du scanner thoracique par un algorithme d’intelligence artificielle avec des données cliniques et biologiques pour attribuer un score de gravité à l’atteinte pulmonaire et prédire son évolution (photo d'illustration). D. R.

À Villejuif (94), le centre de lutte contre le cancer Gustave-Roussy évalue les patients atteints de Covid-19 ou suspectés de l’être grâce à un score hybride développé en interne. AI-severity combine les informations extraites du scanner thoracique par un algorithme d’intelligence artificielle avec des données cliniques et biologiques pour attribuer un score de gravité à l’atteinte pulmonaire et prédire son évolution.

Une approche holistique

Présenté dans un article de la revue Nature Communications [1], cet outil est le fruit des efforts conjoints des équipes de recherche de Gustave-Roussy, université Paris-Saclay, de l’hôpital du Kremlin-Bicêtre, assistance publique – hôpitaux de Paris, de l’Inria et de la start-up Owkin, réunis au sein de l’étude ScanCovIA. « Début 2020, nous n’avions pas de score. Des patients atteints de Covid-19 arrivaient en bon état général mais mourraient chez eux quelques jours plus tard, se souvient Nathalie Lassau, radiologue à Gustave Roussy – université Par

Il vous reste 78% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Lassau N., Ammari S., Chouzenoux E. et coll., « Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients », Nature Communications, janvier 2021, vol. 12, n° 634. DOI : 10.1038/s41467-020-20657-4.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

18 Juin

16:00

Des guidelines européennes concernant le coroscanner dans l'évaluation des prothèses valvulaires cardiaques sont parues dans JACC.

13:30

La thrombectomie par voie radiale est associée à moins de complications au site d'abord que la thrombectomie par voie fémorale, mais aussi à un moins bon résultat clinique (score mRS d'évaluation fonctionnelle post-AVC), selon une revue systématique avec méta-analyse parue dans Journal of Neuroradiology.

7:30

RadGPT, un système basé sur un grand modèle de langage (LLM) qui génère de l'information pour les patients afin d'expliquer les comptes-rendus radiologiques, génère des explications de haute qualité et personnalisées, selon une étude du JACR. Ces explications seraient susceptibles d'améliorer la compréhension des patients et peu à risque d'erreurs problématiques.
Docteur Imago

GRATUIT
VOIR