Développement des algorithmes

Comment améliorer les challenges en intelligence artificielle ?

Au congrès de l’ECR 2020, Lena Maier-Hein, professeur de sciences informatiques, a proposé de faire évoluer les méthodes de conception et de compte rendu des challenges d’analyse automatique d’images biomédicales. Leur manque de rigueur et de précision perturberait aujourd’hui l’interprétation et la reproductibilité des résultats.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/07/20 à 15:00, mise à jour hier à 15:13 Lecture 4 min.

Dans les challenges d'intelligence artificielle en imagerie médicale, « le gagnant n’est pas toujours le meilleur », affirme Lena Maier-Hein, qui dirige le département des interventions médicales assistées par ordinateur du Centre allemand de recherche sur le cancer (photo d'illustration). © Carla Ferrand

Les challenges se multiplient ces dernières années en intelligence artificielle appliquée à l’imagerie médicale. Mercredi 15 juillet, une session du Congrès européen de radiologie (ECR) s’est intéressée à la méthodologie de ces concours. De façon classique, leurs organisateurs définissent une problématique, une base de données, et évaluent objectivement les performances des algorithmes développés par les participants. Mais pour Lena Maier-Hein, qui dirige le département des interventions médicales assistées par ordinateur du Centre allemand de recherche sur le cancer, « le gagnant n’est pas toujours le meilleur ». De nombreuses erreurs viendraient en effet perturber les classements.

Bien définir ses indicateurs

Elles commenceraient dès la conception des challenges, affirme cette professeure de sciences informatiques, à l’appui d’une étude internationale qu’elle a dirigée et qui a analysé plus de 500 de ces compétitions [1]. « Leurs concepteurs ne réfléchissent pas assez aux indicateurs d

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Maier-Hein L., Eisenmann M., Reinke A. et coll., « Why rankings of biomedical image analysis competitions should be interpreted with care », Nature Communications, 2018, vol. 9. DOI : 10.1038/s41467-018-07619-7.
  2. Maier-Hein L., Reinke A., Kozubek M. et coll., « BIAS: transparent reporting of biomedical image analysis challenges », Med Image Anal, 2020.
  3. Wiesenfarth M., Reinke A., Landman B. A. et coll., « Methods and open-source tookits for analyzing and visualizing challenge results », ArXiv, 10 novembre 2019. https://arxiv.org/pdf/1910.05121v1.pdf. Consulté le 17 juillet 2020.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

29 Août

14:11

Un comité multidisciplinaire a élaboré un score pour évaluer la qualité des examens d'IRM pour l'évaluation du cancer de la vessie. « Cela devrait faciliter la reproductibilité et renforcer la confiance dans l'IRM de la vessie au sein des équipes multidisciplinaires », écrit-il dans European Radiology.

7:00

13:10

L'échographie à haute fréquence pourrait être utilisée pour évaluer l'âge osseux chez les enfants, selon une étude publiée par le Journal of the American College of Radiology . 

7:30

Une étude menée à Pékin conclut que l’échographie au lit du patient (POCUS) est une solution pour une évaluation fiable du score VExUS (venous excess ultrasound) en situation de congestion veineuse pathologique.
Docteur Imago

GRATUIT
VOIR