Intelligence artificielle

Comment limiter les biais dans la gestion des données de radiologie en apprentissage automatique ?

En apprentissage automatique, la gestion des données représente une étape cruciale dans le développement de nouveaux algorithmes. Un article publié le 24 août dans Radiology : Artificial Intelligence résume les différents biais qui peuvent peser sur le traitement des données au début du développement d'une nouvelle IA, et les moyens d'y faire face.

icon réservé aux abonnésArticle réservé aux abonnés
Le 20/09/22 à 15:00, mise à jour le 11/09/23 à 13:23 Lecture 3 min.

Plusieurs risques de biais menacent la gestion des données radiologiques en amont de la création d'une IA, que ce soit au moment de leur sélection, de leur vérification ou de leur affectation aux différentes étapes du développement (photo d'illustration). Mike MacKenzie | CC BY 2.0 (no changes made)

Quels biais menacent la conception de bonnes IA basées sur l'apprentissage automatique en radiologie ? Une équipe de chercheurs étasuniens de la Mayo Clinic à Rochester (Minnesota) a publié le 24 août dans Radiology : Artificial Intelligence un inventaire des biais propres à la gestion des données radiologiques en amont de la création d'une IA, ainsi que de leurs antidotes [1]. Ce papier constitue la première partie d'une série de trois articles destinés à vulgariser auprès des radiologues les biais à prendre en compte dans le développement d'une IA utilisant l'apprentissage automatique.

Quatre étapes de gestion des données à contrôler

Par gestion des données, les auteurs entendent tous les processus impliquant la manipulation de données radiologiques entre l'idée initiale de créer une nouvelle IA et le développement du modèle d'apprentissage automatique correspondant. Quatre étapes successives relèvent de la gestion de données : la collecte d'un jeu de données radiologiques, l'analyse d

Il vous reste 79% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Rouzrokh P., Khosravi B., Faghani S. et coll., « Mitigating bias in radiology machine learning : 1. Data Handling », Radiology : Artificial Intelligence, août 2022, vol. 4, n° 5. DOI : t10.1148/ryai.210290.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

17 Jan

16:31

Un arrêté publié dans le Journal officiel du 14 janvier 2025 a inscrit des électrodes aiguilles de radiofréquence COOL-TIP E SERIES® (MEDTRONIC France) sur la liste des produits et prestations remboursables.

12:04

Un protocole abrégé d'IRM (T2 + DWI + HBP) s'est montré prometteur pour la détection du carcinome hépatocellulaire, avec une efficacité diagnostique « relativement élevée », dans le cadre d'une étude présentée dans Academic Radiology.

7:30

Chez les femmes ayant des antécédents personnels de cancer du sein, la surveillance par IRM était associée à une probabilité plus faible de cancer du sein secondaire avancé avant et après l’appariement par score de propension (PSM), conclut une étude parue dans Radiography.
16 Jan

15:53

L'implication des radiologues dans l'évaluation par les pairs du contourage des cibles des traitements de radiothérapie est associée à une augmentation significative du taux de changements cliniquement significatifs de ces cibles, selon une méta-analyse parue dans JAMA Network Open.
Docteur Imago

GRATUIT
VOIR