Segmentation corps entier

Des chercheurs suisses développent une IA de segmentation du corps disponible publiquement

Le modèle d'apprentissage profond suisse TotalSegmentator permet de segmenter de manière robuste 104 structures anatomiques sur des images de scanner normales et pathologiques. Plus généraliste que les précédents logiciels de segmentation disponibles publiquement selon ses créateurs, TotalSegmentator a fait l'objet d'une publication dans Radiology: Artificial Intelligence le 5 juillet 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/09/23 à 7:00 Lecture 3 min.

Afin de développer un tel outil de segmentation à l'échelle du corps entier, les chercheurs ont entraîné un algorithme de segmentation d'apprentissage profond utilisant la méthode nnU-NET © Jakob Wasserthal et al

De plus en plus utilisés par les radiologues, les outils de segmentation sont surtout spécialisés dans la segmentation de certains organes (foie, rate, etc.) et généralement développés par des entreprises privées ou entraînées sur des jeux de données non disponibles publiquement, rendant leur fonctionnement opaque. Afin de mettre à disposition des radiologues un outil de segmentation générale et basé sur des données publiquement accessibles, des chercheurs de la clinique de radiologie et de médecine nucléaire de l'hôpital universitaire de Bâle (Suisse) ont développé l'outil TotalSegmentator, qui a fait l'objet d'une étude rétrospective [1] en juillet puis d'un commentaire éditorial en août dans Radiology: Artificial Intelligence. [2]

Un algorithme utilisant la méthode nnU-NET

Afin de développer un tel outil de segmentation à l'échelle du corps entier, les chercheurs ont entraîné un algorithme de segmentation d'apprentissage profond utilisant la méthode nnU-NET (acronyme de l'anglais

Il vous reste 81% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Wasserthal J, Breit H-C, Meyer M-T., « TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images », Radiology: Artificial Intelligence, juillet 2023, DOI : 10.1148/ryai.230024
  2. Sebro R., Mongan J., « TotalSegmentator: A Gift to the Biomedical Imaging Community », Radiology: Artificial Intelligence, Août 2023, DOI : 10.1148/ryai.230235

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

19 Août

7:49

Le professeur Benoît Gallix est nommé directeur général de l’Hôpital américain de Paris, a annoncé l'établissement de santé privé dans un communiqué. Radiologue et professeur de médecine, il succède au professeur Robert Sigal, en poste depuis 2017.
18 Août

15:00

La « conception de l'étude », l' « explicabilité » et la « transparence », ne sont souvent pas abordées de façon exhaustive dans les études évaluant des applications d'apprentissage profond pour les fractures des côtes, selon une meta-analyse parue dans Insights Into Imaging.

7:00

Un article paru dans Emergency Radiology présente une analyse anatomique et d’imagerie ciblée des lésions du grand pectoral observées à l’IRM. L’incidence de ces lésions a augmenté de 40 % ces deux dernières décennies, justifient les auteurs.
Docteur Imago

GRATUIT
VOIR