Segmentation corps entier

Des chercheurs suisses développent une IA de segmentation du corps disponible publiquement

Le modèle d'apprentissage profond suisse TotalSegmentator permet de segmenter de manière robuste 104 structures anatomiques sur des images de scanner normales et pathologiques. Plus généraliste que les précédents logiciels de segmentation disponibles publiquement selon ses créateurs, TotalSegmentator a fait l'objet d'une publication dans Radiology: Artificial Intelligence le 5 juillet 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/09/23 à 7:00 Lecture 3 min.

Afin de développer un tel outil de segmentation à l'échelle du corps entier, les chercheurs ont entraîné un algorithme de segmentation d'apprentissage profond utilisant la méthode nnU-NET © Jakob Wasserthal et al

De plus en plus utilisés par les radiologues, les outils de segmentation sont surtout spécialisés dans la segmentation de certains organes (foie, rate, etc.) et généralement développés par des entreprises privées ou entraînées sur des jeux de données non disponibles publiquement, rendant leur fonctionnement opaque. Afin de mettre à disposition des radiologues un outil de segmentation générale et basé sur des données publiquement accessibles, des chercheurs de la clinique de radiologie et de médecine nucléaire de l'hôpital universitaire de Bâle (Suisse) ont développé l'outil TotalSegmentator, qui a fait l'objet d'une étude rétrospective [1] en juillet puis d'un commentaire éditorial en août dans Radiology: Artificial Intelligence. [2]

Un algorithme utilisant la méthode nnU-NET

Afin de développer un tel outil de segmentation à l'échelle du corps entier, les chercheurs ont entraîné un algorithme de segmentation d'apprentissage profond utilisant la méthode nnU-NET (acronyme de l'anglais

Il vous reste 81% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Wasserthal J, Breit H-C, Meyer M-T., « TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images », Radiology: Artificial Intelligence, juillet 2023, DOI : 10.1148/ryai.230024
  2. Sebro R., Mongan J., « TotalSegmentator: A Gift to the Biomedical Imaging Community », Radiology: Artificial Intelligence, Août 2023, DOI : 10.1148/ryai.230235

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

08 Sep

15:30

Dans son édition du 13 août, l'hebdomadaire Le Canard Enchaîné a publié le témoignage anonyme d'un radiologue dénonçant des fraudes à la cotation des actes et le manque de contrôle de la CNAM.

13:27

Le groupe Résonance Imagerie annonce dans un communiqué un plan d'investissement de 30 millions d'euros pour moderniser et étendre son parc d'équipement. 50 nouvelles installations et deux IRM mobiles sont notamment prévues.

7:11

Le scanner TEP PHAROS de la société Brightonix Imaging, spécialisée en imagerie médicale de pointe, a reçu l’autorisation FDA pour ce système qui offre des images haute résolution pour une détection précoce des maladies, un diagnostic précis et une planification optimisée du traitement, indique un communiqué de la firme.
05 Sep

16:07

Les patientes atteintes de malformations artérioveineuses cérébrales non rompues avec une localisation occipitale sont plus susceptibles d’avoir des maux de tête. L’angiographie quantitative par soustraction numérique peut quantifier objectivement les changements hémodynamiques dans les maux de tête liés au MAV non rompues. (étude).
Docteur Imago

GRATUIT
VOIR