Segmentation corps entier

Des chercheurs suisses développent une IA de segmentation du corps disponible publiquement

Le modèle d'apprentissage profond suisse TotalSegmentator permet de segmenter de manière robuste 104 structures anatomiques sur des images de scanner normales et pathologiques. Plus généraliste que les précédents logiciels de segmentation disponibles publiquement selon ses créateurs, TotalSegmentator a fait l'objet d'une publication dans Radiology: Artificial Intelligence le 5 juillet 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 26/09/23 à 7:00 Lecture 3 min.

Afin de développer un tel outil de segmentation à l'échelle du corps entier, les chercheurs ont entraîné un algorithme de segmentation d'apprentissage profond utilisant la méthode nnU-NET © Jakob Wasserthal et al

De plus en plus utilisés par les radiologues, les outils de segmentation sont surtout spécialisés dans la segmentation de certains organes (foie, rate, etc.) et généralement développés par des entreprises privées ou entraînées sur des jeux de données non disponibles publiquement, rendant leur fonctionnement opaque. Afin de mettre à disposition des radiologues un outil de segmentation générale et basé sur des données publiquement accessibles, des chercheurs de la clinique de radiologie et de médecine nucléaire de l'hôpital universitaire de Bâle (Suisse) ont développé l'outil TotalSegmentator, qui a fait l'objet d'une étude rétrospective [1] en juillet puis d'un commentaire éditorial en août dans Radiology: Artificial Intelligence. [2]

Un algorithme utilisant la méthode nnU-NET

Afin de développer un tel outil de segmentation à l'échelle du corps entier, les chercheurs ont entraîné un algorithme de segmentation d'apprentissage profond utilisant la méthode nnU-NET (acronyme de l'anglais

Il vous reste 81% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Wasserthal J, Breit H-C, Meyer M-T., « TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images », Radiology: Artificial Intelligence, juillet 2023, DOI : 10.1148/ryai.230024
  2. Sebro R., Mongan J., « TotalSegmentator: A Gift to the Biomedical Imaging Community », Radiology: Artificial Intelligence, Août 2023, DOI : 10.1148/ryai.230235

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
20 Nov

16:01

Les séquences ciné en IRM cardiaque reconstruites par apprentissage profond et acquises sur trois cycles cardiaques permettent de réduire le temps d’acquisition de plus de 50 % par rapport à la séquence référence sans apprentissage profond, et le tout sans différence dans la qualité d'image, selon une étude prospective menée sur 55 volontaires sains en IRM 1,5 T.
Docteur Imago

GRATUIT
VOIR