Congrès Spimed

« La radiographie thoracique est une bonne candidate pour le développement d’algorithmes d’IA »

Au congrès Spimed-IA consacré au développement des applications d'intelligence artificielle en imagerie, la radiologue Marie-Pierre Revel a détaillé les performances des algorithmes pour la détection des lésions en radiographie thoracique.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/10/19 à 15:00, mise à jour hier à 14:16 Lecture 2 min.

Au congrès Spimed IA, la radiologue Marie-Pierre Revel a évoqué le développement des applications d’intelligence artificielle en imagerie thoracique. © C. F.

Le congrès Spimed IA s’est tenu les 20 et 21 septembre 2019 à l’institut Montsouris, à Paris. Il y fut notamment question du développement des applications de l’intelligence artificielle (IA). Le 20 septembre, Marie-Pierre Revel, radiologue à l’hôpital Cochin - AP-HP, a évoqué le sujet dans le domaine de l’imagerie thoracique.

Une mine d’or de données

« La radiographie thoracique est une bonne candidate pour le développement d’algorithmes d’IA », souligne-t-elle en préambule. En effet, le nombre d’examens à interpréter dans ce domaine représente à la fois une charge de travail « insupportable » pour les radiologues et une mine d’or pour entraîner des algorithmes. « Nous stockons des millions d’images avec leurs comptes rendus », rappelle l’intervenante.

Des bases américaines et indiennes

Aux États-Unis, le National Institute of Health (NIH) a constitué une base de données baptisée ChestX-ray8, labellisée avec huit types d’anomalies fréquentes en radiographie thoracique : pneumonie, pneumot

Il vous reste 74% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Hwang E. J., Park S., Jin K.-N. et coll., « Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs », JAMA Netw Open, 2019, vol. 2, n° 3. DOI : 10.1001/jamanetworkopen.2019.1095.  

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

30 Jan

7:12

Avec leurs capacités à détecter le métastases, la TEP-TDM au PSMA et l'IRM corps entier ont le potentiel de modifier la prise en charge des patients avec un cancer de la prostate avancé, mais des essais prospectifs sont nécessaires avant de les recommander en routine clinique, conclut un article dans European Radiology.
29 Jan

16:21

Alain Luciani, PU-PH au GHU Henri-Mondor (94) a été élu futur président de la Société française de radiologie (SFR) pour le mandat 2027 - 2031 ce 29 janvier, annonce la SFR.

15:25

Une étude publiée dans JACR compare l’utilisation des examens d’imagerie chez des enfants en consultation externe dans les hôpitaux pédiatriques et non pédiatriques à partir de données Medicaid 2019. Elle montre que les hôpitaux non pédiatriques utilisent plus fréquemment les examens exposant aux radiations ionisantes, tels que les radiographies et scanners, tandis que les hôpitaux pédiatriques privilégient davantage l’échographie et l’IRM.  

13:18

Une étude publiée dans Emergency Radiology rapporte un cas d’hémorragie sous-arachnoïdienne avec anévrismes multiples, dans lequel l’imagerie conventionnelle ne permettait pas d’identifier l’anévrisme rompu. L’IRM de la paroi vasculaire a mis en évidence un rehaussement focal de l’anévrisme du sommet basilaire, permettant un traitement endovasculaire ciblé et soulignant l’intérêt de cette technique dans les situations diagnostiques complexes.  
Docteur Imago

GRATUIT
VOIR