Congrès Spimed

« La radiographie thoracique est une bonne candidate pour le développement d’algorithmes d’IA »

Au congrès Spimed-IA consacré au développement des applications d'intelligence artificielle en imagerie, la radiologue Marie-Pierre Revel a détaillé les performances des algorithmes pour la détection des lésions en radiographie thoracique.

icon réservé aux abonnésArticle réservé aux abonnés
Le 22/10/19 à 15:00, mise à jour hier à 14:19 Lecture 2 min.

Au congrès Spimed IA, la radiologue Marie-Pierre Revel a évoqué le développement des applications d’intelligence artificielle en imagerie thoracique. © C. F.

Le congrès Spimed IA s’est tenu les 20 et 21 septembre 2019 à l’institut Montsouris, à Paris. Il y fut notamment question du développement des applications de l’intelligence artificielle (IA). Le 20 septembre, Marie-Pierre Revel, radiologue à l’hôpital Cochin - AP-HP, a évoqué le sujet dans le domaine de l’imagerie thoracique.

Une mine d’or de données

« La radiographie thoracique est une bonne candidate pour le développement d’algorithmes d’IA », souligne-t-elle en préambule. En effet, le nombre d’examens à interpréter dans ce domaine représente à la fois une charge de travail « insupportable » pour les radiologues et une mine d’or pour entraîner des algorithmes. « Nous stockons des millions d’images avec leurs comptes rendus », rappelle l’intervenante.

Des bases américaines et indiennes

Aux États-Unis, le National Institute of Health (NIH) a constitué une base de données baptisée ChestX-ray8, labellisée avec huit types d’anomalies fréquentes en radiographie thoracique : pneumonie, pneumot

Il vous reste 74% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Hwang E. J., Park S., Jin K.-N. et coll., « Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs », JAMA Netw Open, 2019, vol. 2, n° 3. DOI : 10.1001/jamanetworkopen.2019.1095.  

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.

7:11

Stéphanie Rist, la ministre de la santé, a présenté une stratégie nationale pour lutter contre la désinformation médicale. Elle prévoit notamment la création d’un observatoire de la désinformation en santé et d’un dispositif d’infovigilance afin de répondre plus rapidement aux fausses informations
14 Jan

16:04

L’ablation robotisée par radiofréquence des tumeurs pulmonaires est une technique réalisable et sûre, indique une étude parue dans l'European Journal of Radiology. Cela permettrait de minimiser les ajustements des aiguilles, réduisant ainsi le temps de ponction et réduisant l’exposition aux radiations chez les patients.
Docteur Imago

GRATUIT
VOIR