Intelligence artificielle

La recherche explore les possibilités des algorithmes contre le COVID-19

Dans le monde entier, des équipes de chercheurs tentent de développer des outils d’intelligence artificielle qui pourront aider les radiologues à détecter et évaluer le COVID-19 sur des examens de radiographie ou de scanner.

icon réservé aux abonnésArticle réservé aux abonnés
Le 07/05/20 à 15:00, mise à jour hier à 14:10 Lecture 4 min.

Le modèle COVIDNet-CXR Small développé à l'aide du réseau de neurones COVIDNet aurait montré une sensibilité de 87,1 % et une valeur prédictive positive de 96,4 %, affirment ses développeurs. Wang L. et coll.

Les algorithmes seront-ils des alliés de poids contre le coronavirus ? Pour l’heure, seule une poignée de solutions est disponible dans le commerce, mais les chercheurs et les développeurs travaillent avec enthousiasme. « Il y a une ruée vers l’utilisation et l’exploration des possibilités de l’intelligence artificielle et d’autres outils d’analyse pour diagnostiquer, prédire et traiter le COVID-19 », constate l’économiste Wim Naudé dans un article du 1er avril [1].

Détecter la pneumonie sur les radiographies

Aux États-Unis, les médecins de UC San Diego Health, associés à Amazon Web Services, évaluent l’efficacité chez les patients COVID d’un algorithme développé par leurs soins pour détecter la pneumonie sur des radiographies du thorax.  « Environ 75 % des patients COVID-19 positifs hospitalisés développent une pneumonie virale, rappellent-ils dans la revue Journal of Thoracic Imaging [2]. La détection rapide de la pneumonie chez ces patients pourrait permettre une application rapide de

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint

Voir la fiche de l’auteur

Bibliographie

  1. Naudé W., « Artificial intelligence against COVID-19: an early review », Towards Data Science, Medium, 1er avril 2020. https://towardsdatascience.com/artificial-intelligence-against-covid-19-an-early-review-92a8360edaba. Site consulté le 7 mai 2020.
  2. Hurt B., Kligerman S., Hsiao A., « Deep Learning Localization of Pneumonia 2019 Coronavirus (COVID-19) Outbreak », Journal of Thoracic Imaging, 20 mars 2020, publication anticipée en ligne. DOI : 0.1097/RTI.0000000000000512.
  3. Wang L., Lin Z. Q., Wong A., « A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 », arXiv.org, 2020, publication en ligne.
  4. Dans Bai H. X., Wang R., Xiong Z. et coll., « AI Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Etiology on Chest CT », Radiology, 27 avril 2020, publication en ligne. DOI : 10.1148/radiol.2020201491.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

17 Jan

16:31

Un arrêté publié dans le Journal officiel du 14 janvier 2025 a inscrit des électrodes aiguilles de radiofréquence COOL-TIP E SERIES® (MEDTRONIC France) sur la liste des produits et prestations remboursables.

12:04

Un protocole abrégé d'IRM (T2 + DWI + HBP) s'est montré prometteur pour la détection du carcinome hépatocellulaire, avec une efficacité diagnostique « relativement élevée », dans le cadre d'une étude présentée dans Academic Radiology.

7:30

Chez les femmes ayant des antécédents personnels de cancer du sein, la surveillance par IRM était associée à une probabilité plus faible de cancer du sein secondaire avancé avant et après l’appariement par score de propension (PSM), conclut une étude parue dans Radiography.
16 Jan

15:53

L'implication des radiologues dans l'évaluation par les pairs du contourage des cibles des traitements de radiothérapie est associée à une augmentation significative du taux de changements cliniquement significatifs de ces cibles, selon une méta-analyse parue dans JAMA Network Open.
Docteur Imago

GRATUIT
VOIR