Apprentissage machine

L’algorithme qui évaluerait mieux les cancers de la prostate

Des chercheurs californiens ont développé et testé un dispositif à base d’apprentissage machine capable de classer les tumeurs de la prostate à partir d’examens d’IRM multiparamétrique. D’après leurs résultats, il fait mieux que la classification PI-RADS dans certains domaines.

icon réservé aux abonnésArticle réservé aux abonnés
Le 20/02/19 à 16:04, mise à jour aujourd'hui à 14:19 Lecture 2 min.

Les chercheurs espèrent aboutir « à des traitements plus efficaces et personnalisés » du cancer de la prostate (photo d'illustration d'IRM de la prostate en T2). © Daniel Portalez

Bino Varghese, spécialiste en imagerie quantitative, et ses confrères de l’université de Californie du sud et de l’institut d’urologie de Los Angeles, ont développé un algorithme capable d’évaluer de façon objective la malignité de cancers de la prostate à partir de caractéristiques radiomiques extraites d’examens d’IRM multiparamétrique. « L’IRM multiparamétrique prend une importance croissante pour évaluer, localiser et stadifier le cancer de la prostate, mais son interprétation [par l’humain] est généralement variable, parce que subjective », écrivent-ils dans la revue Scientific Reports [1] pour justifier leur démarche.

68 patients et 110 caractéristiques radiomiques

Pour combler ces lacunes, ils ont travaillé à partir de données de 68 patients rassemblées dans un même centre entre 2013 et 2016. Tous avaient passé une IRM multiparamétrique et avaient été soumis à une biopsie sous guidage échographique 3D avec fusion d’images avec l’IRM. Ils ont été divisés en deux groupes : « risque

Il vous reste 67% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Varghese B., Chen F., Hwang D., « Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric resonance images », Scientific Reports, vol. 9, 2019. DOI : 10.1038/s41598-018-38381-x.

Discussion

Commenter cet article
  1. Marc AzancotEn français.. la classification?
    Il y a 6 ans

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

04 Déc

16:10

Une étude, présentée au RSNA, a révélé que l'obésité abdominale, parfois appelée « ventre à bière », est associée à des modifications de la structure cardiaque en plus du poids, en particulier chez les hommes. Ces résultat mettent également en lumière les mesures que les patients et les médecins peuvent prendre pour identifier les risques potentiels et intervenir plus tôt afin de protéger le cœur.

11:00

La forme du muscle grand fessier change de différentes manières avec l’âge, le mode de vie, l’ostéoporose ou le diabète de type 2, et ces changements diffèrent entre les femmes et les hommes, selon une nouvelle étude présentée lors du RSNA. (Etude)

7:11

Un modèle de deep learning a amélioré la qualité d'image de l'IRM à faible dose de contraste pour l'imagerie de la citerne de l'angle ponto-cérébelleux, permettant la détection des lésions et la caractérisation diagnostique avec 10 à 30 % de la dose standard (étude).
03 Déc

14:50

Au RSNA 2025, GE Healthcare présente ses deux nouvelles IRM Signa Bolt et Signa Sprint, ainsi que son scanner à comptage photonique baptisé Photonova Spectra.
Docteur Imago

GRATUIT
VOIR