Apprentissage machine

L’algorithme qui évaluerait mieux les cancers de la prostate

Des chercheurs californiens ont développé et testé un dispositif à base d’apprentissage machine capable de classer les tumeurs de la prostate à partir d’examens d’IRM multiparamétrique. D’après leurs résultats, il fait mieux que la classification PI-RADS dans certains domaines.

icon réservé aux abonnésArticle réservé aux abonnés
Le 20/02/19 à 16:04, mise à jour aujourd'hui à 14:17 Lecture 2 min.

Les chercheurs espèrent aboutir « à des traitements plus efficaces et personnalisés » du cancer de la prostate (photo d'illustration d'IRM de la prostate en T2). © Daniel Portalez

Bino Varghese, spécialiste en imagerie quantitative, et ses confrères de l’université de Californie du sud et de l’institut d’urologie de Los Angeles, ont développé un algorithme capable d’évaluer de façon objective la malignité de cancers de la prostate à partir de caractéristiques radiomiques extraites d’examens d’IRM multiparamétrique. « L’IRM multiparamétrique prend une importance croissante pour évaluer, localiser et stadifier le cancer de la prostate, mais son interprétation [par l’humain] est généralement variable, parce que subjective », écrivent-ils dans la revue Scientific Reports [1] pour justifier leur démarche.

68 patients et 110 caractéristiques radiomiques

Pour combler ces lacunes, ils ont travaillé à partir de données de 68 patients rassemblées dans un même centre entre 2013 et 2016. Tous avaient passé une IRM multiparamétrique et avaient été soumis à une biopsie sous guidage échographique 3D avec fusion d’images avec l’IRM. Ils ont été divisés en deux groupes : « risque

Il vous reste 67% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Varghese B., Chen F., Hwang D., « Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric resonance images », Scientific Reports, vol. 9, 2019. DOI : 10.1038/s41598-018-38381-x.

Discussion

Commenter cet article
  1. Marc AzancotEn français.. la classification?
    Il y a 6 ans

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

18 Nov

15:48

L'angioscanner pulmonaire double énergie permettrait une réduction de 25 % du volume de produit de contraste par rapport à l'angioscanner pulmonaire classique, tout en offrant une meilleure qualité d'image quantitative sans augmenter l'exposition aux rayonnements (étude).

13:43

Lors des Assises nationales des départements de France le 14 novembre à Albi, le premier ministre Sébastien Lecornu, a annoncé son projet de réformer les Agences régionales de santé (ARS), rapporte Libération.

7:41

L'ASNR publie un avis d'incident sur un événement significatif concernant la surexposition d’un radiologue au niveau du cristallin lors d'examens sous guidage radioscopique au CHU de Caen (14).
17 Nov

16:54

Le centre de lutte contre le cancer Georges-François Leclerc (CGFL) à Dijon accueille le troisième TEP-TDM corps entier de France métropolitaine, annonce le média Le journal du centre.

Docteur Imago

GRATUIT
VOIR