Flux de travail

Le champ de vision des radiologues s’amenuise avec la fatigue

La proportion des poumons couverte par le regard des radiologues baisse de 1,3 % à 7,6 % après 100 lectures de radiographies thoraciques, selon une étude présentée dans Journal of Digital Imaging. Selon ses auteurs, la caractérisation de la fatigue des radiologues par une IA décodant leurs mouvements oculaires pourrait permettre d’optimiser le flux de travail.

icon réservé aux abonnésArticle réservé aux abonnés
Le 24/01/23 à 8:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.
Reportage HPA Antony dépistage du cancer du poumon scanner

L'IA développée par Bulat Ibragimov, de l'université de Copenhague, détecte la fatigue des radiologues en percevant la diminution de la couverture des images thoraciques par leur regard (photo d'illustration). © Docteur Imago

Et si l'intelligence artificielle (IA) permettait de détecter la fatigue chez le radiologue avant même qu'il s'en aperçoive ? Pour en avoir le cœur net, Bulat Ibragimov, professeur au sein du département de sciences informatiques de l'université de Copenhague (Danemark), et ses collègues, ont analysé la proportion des poumons observée par quatre radiologues sur une station de travail munie de suivi oculaire. D’après leurs résultats, publiés le 9 janvier dans Journal of Digital Imaging, le champ de vision des radiologues diminue de 1,3 % à 7,6 % toutes les 100 radiographies thoraciques, quelles que soient les anomalies présentes sur les images [1]. Cette baisse de la couverture visuelle des images, expliquent-ils, pourrait informer les radiologues qu’il est temps de recourir à une validation extérieure.

400 radiographies thoraciques interprétées

Pour analyser les mouvements oculaires des radiologues, les auteurs de l'étude en ont recruté quatre, auxquels ils ont demandé d’interpréter 400

Il vous reste 70% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Pershin I., Mustafaev T., Ibragimpva D. et coll., « Changes in radiologists’ gaze patterns against lung x-rays with different abnormalities: a randomized experiment », Journal of Digital Imaging, janvier 2023. DOI : 10.1007/s10278-022-00760-2.
  2. Pershin I., Kholiavchenko M., Maksudov B. et coll., « Artificial intelligence for the analysis of workload-related changes in radiologists’ gaze patterns », IEEE Journal of Biomedical and Health Informatics, septembre 2022, vol. 26, n° 9. DOI : 10.1109/JBHI.2022.3183299.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

22 Nov

16:00

Pour les patients non obèses, l’utilisation combinée d’une faible tension du tube (60 kVp) et d’un nouvel algorithme de reconstruction d’images par apprentissage profond (ClearInfinity, DLIR-CI) peut préserver la qualité de l’image tout en permettant des économies de dose de rayonnement et de produit de contraste pour le scanner aortique (étude).

14:39

La découverte fortuite d’anciens accidents vasculaires cérébraux lors d'examens de scanner permettrait aux cliniciens de mettre en place des mesures qui pourraient bénéficier à 100 000 à 200 000 patients par an aux États-Unis pour prévenir de futurs AVC (étude).

7:30

Le Sénat a adopté le 19 novembre un amendement gouvernemental au PLFSS 2025 qui prévoit d'exonérer de cotisations pour l'assurance vieillesse les médecins en situation de cumul emploi-retraite qui exercent dans les zones sous-denses. La Caisse autonome de retraite des médecins français (CARMF) s'alarme dans un communiqué des conséquences de cette mesure.
Docteur Imago

GRATUIT
VOIR