Recherche en neuro-imagerie

Le CNRS affûte ses outils d’IA pour l’imagerie de la SEP

Le Laboratoire bordelais de recherche en informatique (LaBRI) développe des solutions d’apprentissage profond pour l’imagerie de la sclérose en plaques. Après la détection automatique des lésions, les chercheurs travaillent sur la prédiction du score de sévérité de la maladie.

icon réservé aux abonnésArticle réservé aux abonnés
Le 28/06/22 à 15:00, mise à jour le 11/09/23 à 13:23 Lecture 3 min.

Les solutions de deep learning développées par le laboratoire LaBRI pour la SEP sont accessibles sur la plateforme en ligne volBrain. © LaBRI/VolBrain

À Bordeaux, une équipe du CNRS menée par Pierrick Coupé s’intéresse aux problématiques de la sclérose en plaques (SEP) et perfectionne ses outils d’apprentissage profond (deep learning) pour la neuro-imagerie. Reda Abdellah Kamraoui, doctorant au Laboratoire bordelais de recherche en informatique (LaBRI), travaille sur l’automatisation de la segmentation des lésions de SEP et l’extraction de biomarqueurs : « L’automatisation de ces tâches permet de faciliter le travail des neuroradiologues et de leur faire gagner du temps, souligne-t-il. Le suivi des patients atteints de SEP est important pour vérifier que le traitement fonctionne. Avoir des biomarqueurs tels que les volumes lésionnels ou le nombre de nouvelles lésions permet de suivre l’évolution de la maladie. »

Développer des modèles plus performants

Les solutions existantes se basent sur des techniques d’apprentissage qui manquent parfois de précision et ne sont pas généralisables sur des données qui n’ont pas été vues lors de l’entr

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
20 Nov

16:01

Les séquences ciné en IRM cardiaque reconstruites par apprentissage profond et acquises sur trois cycles cardiaques permettent de réduire le temps d’acquisition de plus de 50 % par rapport à la séquence référence sans apprentissage profond, et le tout sans différence dans la qualité d'image, selon une étude prospective menée sur 55 volontaires sains en IRM 1,5 T.
Docteur Imago

GRATUIT
VOIR