Recherche en neuro-imagerie

Le CNRS affûte ses outils d’IA pour l’imagerie de la SEP

Le Laboratoire bordelais de recherche en informatique (LaBRI) développe des solutions d’apprentissage profond pour l’imagerie de la sclérose en plaques. Après la détection automatique des lésions, les chercheurs travaillent sur la prédiction du score de sévérité de la maladie.

icon réservé aux abonnésArticle réservé aux abonnés
Le 28/06/22 à 15:00, mise à jour hier à 14:11 Lecture 3 min.

Les solutions de deep learning développées par le laboratoire LaBRI pour la SEP sont accessibles sur la plateforme en ligne volBrain. © LaBRI/VolBrain

À Bordeaux, une équipe du CNRS menée par Pierrick Coupé s’intéresse aux problématiques de la sclérose en plaques (SEP) et perfectionne ses outils d’apprentissage profond (deep learning) pour la neuro-imagerie. Reda Abdellah Kamraoui, doctorant au Laboratoire bordelais de recherche en informatique (LaBRI), travaille sur l’automatisation de la segmentation des lésions de SEP et l’extraction de biomarqueurs : « L’automatisation de ces tâches permet de faciliter le travail des neuroradiologues et de leur faire gagner du temps, souligne-t-il. Le suivi des patients atteints de SEP est important pour vérifier que le traitement fonctionne. Avoir des biomarqueurs tels que les volumes lésionnels ou le nombre de nouvelles lésions permet de suivre l’évolution de la maladie. »

Développer des modèles plus performants

Les solutions existantes se basent sur des techniques d’apprentissage qui manquent parfois de précision et ne sont pas généralisables sur des données qui n’ont pas été vues lors de l’entr

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

10 Fév

16:00

L'arrêté du 4 février 2026 fixe le contenu et les modalités des appels à candidature pour l'expérimentation du retraitement de certains dispositifs médicaux à usage unique, notamment certains types de cathéters.

14:11

Les modèles de comptes rendus structurés IRM spécifiques à l'endométriose amélioreraient considérablement l'exhaustivité de la documentation par rapport aux modèles généraux et au texte libre (étude).

7:12

Des chercheurs ont développé et validé un modèle pronostique combinant des caractéristiques IRM préthérapeutiques et des données cliniques chez des patients atteints de carcinome hépatocellulaire traités par une chimioembolisation transartérielle, chimiothérapie par perfusion artérielle hépatique et immunothérapie ciblée. Le modèle de synergie imagerie fonctionnelle-fonction hépatique démontre une précision pronostique supérieure à celle des paramètres conventionnels de charge tumorale chez les patients atteints de carcinome hépatocellulaire recevant une thérapie quadruple. De plus, le système de notation à 10 points dérivé permet une stratification des risques cliniquement exploitables. (Étude)  
09 Fév

16:06

Chez les participantes de l'essai canadien Tomosynthesis Mammographic Imaging Screening Trial âgées de 40 à 44 ans et de plus de 75 ans, le dépistage du cancer du sein par tomosynthèse a donné des performances plus favorables que le dépistage par mammographie. Étude.

14:02

Planmed annonce le marquage CE et la commercialisation de XFI®, son scanner cone-beam (CBCT) pour l'imagerie corps entier en charge. La certification concerne l'imagerie des extrémités, de la tête et du cou, précise un communiqué.
Docteur Imago

GRATUIT
VOIR