Intelligence artificielle

Le modèle « YOLO » efficace pour détecter les lésions anormales sur les mammographies

Une étude a évalué un modèle basé sur le réseau d’apprentissage profond You-Only-Look-Once (YOLO) pour détecter et classifier simultanément les lésions suspectes sur les mammographies lors de leur dépistage actuel. Il a atteint 92 % de précision dans le classement des mammographies normales.

icon réservé aux abonnésArticle réservé aux abonnés
Le 27/07/22 à 7:00, mise à jour aujourd'hui à 14:08 Lecture 3 min.

Exemple de mammographies réalisées à 2,5 années d'intervalle chez la même patiente. À gauche, l'examen antérieur apparaît normal. À droite, l'examen « actuel » révèle la présence d'une masse. © Baccouche A. et coll.

Environ 10 % à 30 % des cas de cancer sont manqués lors de la mammographie de dépistage, selon Asma Baccouche, membre du département de sciences informatiques et d’ingénierie de l’université de Louisville, Kentucky (États-Unis), et ses confrères de l’université du Mississipi (États-Unis) et de Bilbao (Espagne). Ces ratages génèrent « un taux de faux négatifs allant jusqu’à 50 % selon le type de lésions et la densité mammaire », rappellent-ils en introduction d’un article de la revue Computer Methods and Programs in Biomédicine [1].

You only look once

Dans cette publication parue en juin 2022, ils présentent les recherches qu’ils ont menées sur un modèle de fusion de bout en bout (end-to-end) basé sur le réseau d’apprentissage profond You-Only-Look-Once (YOLO) et capable de simultanément détecter et classer les lésions mammaires suspectes sur les mammographies numériques. Ils ont travaillé sur une base de données privée de 413 examens réalisés auprès de 230 patientes, dont chacune avait p

Il vous reste 75% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Baccouche A., Garcia-Zapirain E., et coll., « Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques », Computer Methods and Programs in Biomedicine, juin 2022, vol. 221, 106884. DOI : 10.1016/j.cmpb.2022.106884.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

25 Nov

15:48

L'entreprise GE Healthcare annonce l'acquisition du fournisseur de logiciels d'imagerie médical Intelerad pour la somme de 2,3 milliards de dollars (communiqué)

13:42

Aux États-Unis, le nombre total de scanners crâniens réalisés lors d'un passage aux urgences a plus que doublé, passant de 7,8 à 16 millions entre 2007 et 2022 (étude).

7:42

Le CNP de radiologie (G4) publie une pétition en ligne pour demander la préservation de l'accès aux soins en radiologie.
24 Nov

16:41

L'entreprise française Avicenna.AI annonce le lancement d'AVI, une nouvelle plateforme d'intelligence artificielle qui « s'intègre directement dans les PCS et RIS sans nécessiter de visionneuse, de listes de travail supplémentaires ou de changement des flux cliniques », explique un communiqué de presse. Elle est compatible avec tout le portfolio CINA d'Avicenna.
Docteur Imago

GRATUIT
VOIR