Félix Renard et Arnaud Attyé, respectivement ingénieur en traitement d’images médicales au sein de la compagnie Pixyl et neuroradiologue à l’université Grenoble Alpes (38), ont travaillé sur le manifold learning. Cette forme d’apprentissage en intelligence artificielle, très utilisée en Data Science, est encore peu répandue en médecine. Elle consiste grosso modo à convertir un jeu de données de grande dimension en quelques variables caractéristiques dans un espace réduit. L'algorithme étudie ensuite la distance entre les individus dans cet espace pour diagnostiquer et pronostiquer les maladies.
« On ne moyenne rien »
« C’est une méthode qui permet de tenir compte de la variabilité individuelle. On ne moyenne rien, décrivait Arnaud Attyé lors d'une session des Journées francophones de radiologie 2020, le 2 octobre. Le caractère innovant des algorithmes de manifold learning développés à Grenoble ne repose pas sur l’étape de réduction de dimension, somme toute assez banale, mais sur l’étape
Discussion
Aucun commentaire
Commenter cet article