Imagerie abdominale

L’IA et le scanner démasquent la myostéatose comme facteur prédictif de mortalité

En se basant sur des images de scanners abdominaux et sur un algorithme d'intelligence artificielle pour l'analyse de la composition corporelle, des chercheurs de l'université de Louvain (Belgique) ont identifié la myostéatose comme un facteur prédictif clé du risque de mortalité.

icon réservé aux abonnésArticle réservé aux abonnés
Le 02/06/23 à 15:00, mise à jour le 11/09/23 à 13:24 Lecture 3 min.

Des chercheurs de l’université de Louvain ont utilisé des mesures de composition corporelle basées sur l'intelligence artificielle afin d’analyser l'association entre l'obésité, la stéatose hépatique, la myopénie et la myostéatose et le risque de mortalité, à partir d'images de scanners abdominaux. © M. Nachit et coll./RSNA 2023

En Belgique, des chercheurs de l’université de Louvain ont utilisé des mesures de composition corporelle basées sur l'intelligence artificielle pour analyser l'association entre l'obésité, la stéatose hépatique, la myopénie et la myostéatose, et le risque de mortalité. En se basant sur des images de scanners abdominaux réalisés en routine chez des patients adultes asymptomatiques, ils ont pu déterminer que la myostéatose était un facteur prédictif clé du risque de mortalité. Les résultats de leurs travaux ont été publiés au mois de mai 2023 dans Radiology [1].

Scanners abdominaux de dépistage

Pour cette étude rétrospective monocentrique, les chercheurs belges ont inclus 8 982 patients externes (âge moyen 57 ans ; 5 008 femmes, 3 974 hommes) qui avaient passé un dépistage du cancer colorectal entre 2004 et 2016. À l’aide d’un algorithme d’intelligence artificielle (U-Net), ils ont extrait les paramètres de composition corporelle des patients à partir des données de leurs scanners abdomina

Il vous reste 75% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Nachit M., Horsmans Y., Summers R. M. et coll., « AI-based CT body composition identifies myosteatosis as key mortality predictor in asymptomatic adults », Radiology, epub 16 mai 2023. DOI : 10.1148/radiol.222008.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

22 Nov

16:00

Pour les patients non obèses, l’utilisation combinée d’une faible tension du tube (60 kVp) et d’un nouvel algorithme de reconstruction d’images par apprentissage profond (ClearInfinity, DLIR-CI) peut préserver la qualité de l’image tout en permettant des économies de dose de rayonnement et de produit de contraste pour le scanner aortique (étude).

14:39

La découverte fortuite d’anciens accidents vasculaires cérébraux lors d'examens de scanner permettrait aux cliniciens de mettre en place des mesures qui pourraient bénéficier à 100 000 à 200 000 patients par an aux États-Unis pour prévenir de futurs AVC (étude).

7:30

Le Sénat a adopté le 19 novembre un amendement gouvernemental au PLFSS 2025 qui prévoit d'exonérer de cotisations pour l'assurance vieillesse les médecins en situation de cumul emploi-retraite qui exercent dans les zones sous-denses. La Caisse autonome de retraite des médecins français (CARMF) s'alarme dans un communiqué des conséquences de cette mesure.
Docteur Imago

GRATUIT
VOIR