Lors d’une session du RSNA 2021 consacrée aux innovations en IRM, Florian Knoll, chef du service d’intelligence artificielle en imagerie de l’université Friedrich-Alexander Erlangen-Nürnberg, en Allemagne, a dressé un état des lieux des enjeux et du potentiel de l’intelligence artificielle et de l’apprentissage machine dans le domaine de l’accélération des acquisitions. « La durée d’examen pose des problèmes de confort et de coopération des patients et fait de l’IRM une modalité coûteuse, a-t-il rappelé en préambule. Nous sommes confrontés à des artefacts de mouvement et, par exemple quand nous réalisons des images dynamiques en imagerie cardiaque, il n’est pas toujours possible de faire durer l’examen. »
Plus vite sans artefacts
Une façon simple d’accélérer l’acquisition est de réduire le nombre de lignes de données dans l’espace K, grâce aux technologies d’imagerie parallèle et de compressed sensing. Problème : cette approche produit des artefacts sur les images reconstruites. Dans une
Discussion
Aucun commentaire
Commenter cet article