Éthique

Quelles stratégies pour limiter les biais des systèmes d’IA ?

Une session du RSNA 2022 s'est intéressée aux défis éthiques de l'intelligence artificielle, et notamment l'identification et la réduction des biais. La radiologue américaine Zi Zhang a présenté des stratégies pour éviter ces biais lors du développement, de l'évaluation et du déploiement clinique des systèmes.

icon réservé aux abonnésArticle réservé aux abonnés
Le 14/12/22 à 8:00, mise à jour le 11/09/23 à 13:23 Lecture 4 min.

« Les biais peuvent se cacher dans les données, dans les algorithmes et dans les applications cliniques. Ils reflètent souvent des déséquilibres profonds dans les structures institutionnelles et les relations sociales », relève Zi Zhang. © C. F.

Les considérations éthiques de l’intelligence artificielle (IA) en radiologie étaient l’un des sujets saillants du RSNA 2022. Le 27 novembre, une session a traité la question des biais de l’IA. « Les biais peuvent se cacher dans les données, dans les algorithmes et dans les applications cliniques », a souligné Zi Zhang, professeure assistante de radiologie à l’hôpital universitaire Jefferson, à Philadelphie.

La communauté médicale sur le qui-vive

Selon elle, ces biais reflètent souvent des déséquilibres profonds dans les structures institutionnelles et les relations sociales. Des considérations techniques et sociales doivent donc être apportées pour les identifier, les réduire et, in fine les éliminer des systèmes d’IA. Concernant cette problématique, l’intervenante cite une déclaration multisociétaire commune entre l’Europe et l’Amérique du Nord, publiée en 2019 dans la revue Radiology [1]. Le document stipule que la responsabilité ultime de l'IA incombe à ses concepteurs et à ses opéra

Il vous reste 82% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Raymond Geis J., Brady A. P., Carol C. et coll., « Ethics of artificial intelligence in radiology: summary of the joint european and north american multisociety statement », Radiology, novembre 2019, vol. 293, n° 2, p. 241-244. DOI : 10.1148/radiol.2019191903.
  2. Vokinger K. N., Feuerriegel S., Kesselheim A. S. et coll., « Mitigating bias in machine learning for medicine », Nature Communications Medicine, 2021, vol. 1, n° 25. DOI : 10.1038/s43856-021-00028-w.
  3. Zou J., Schiebinger L., « AI can be sexist and racist – it’s time to make it fair », Nature, juillet 2018, vol. 559, p. 324-326. DOI : 10.1038/d41586-018-05707-8.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

15 Juil

16:00

Un « potentiel prometteur » des modèles de langages dans les classifications radiologiques. Selon une étude parue le 7 juillet, ces modèles ont montré une justesse dans la classification générale des fractures, mais des limites de classifications détaillées confirme le besoin de validation par les professionnels de santé avant une véritable utilisation.

13:54

PANCANAI, un modèle d’intelligence artificielle, montre une haute sensibilité dans la détection du cancer du pancréas sur les scanners, dans une large étude rétrospective de cohorte, publiée dans la revue Investigate Radiology.

7:30

En Australie et Nouvelle Zélande, les radiologues en imagerie oncologique préfèrent utiliser des rapports structurés sans terminologies pré-écrite. Selon une étude publiée dans JMIRO, l’utilisation des rapports plus structuré est plus importante dans les pays ou la pratique de l'imagerie oncologique est plus importante et le personnel mieux formé.
11 Juil

17:17

D'après un nouvelle étude menée par une équipe germano-américaine et publié par European Journal of Radiology, la réussite de la mise en place de l'IA nécessite une organisation solide et une équipe de surveillance aguerri pour superviser l'évolution, le déploiement et la maintenance continue des algorithmes.

16:13

Selon une étude publiée dans Academic Radiology, des QCM générés par ChatGPT comme outil de renforcement des connaissances ont obtenu des taux de réussite très proche de ceux de radiologues expérimentés. Malgré une qualité jugée assez proche, une partie des étudiants ont reconnu les QCM écrits par des radiologues.
Docteur Imago

GRATUIT
VOIR