Aide au diagnostic

Un logiciel de recherche d’images diminue de 31 % le temps de lecture des scanners thoraciques

Dans le cadre d'une étude présentée dans European Radiology, un système de recherche d'images basé sur le contenu appliqué au diagnostic de pneumopathies interstitielles diffuses a réduit de 31 % le temps de lecture sans perte de précision diagnostique.

icon réservé aux abonnésArticle réservé aux abonnés
Le 30/09/22 à 7:00, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

Le système de recherche d'image par le contenu employé dans l'étude s'exécute depuis le PACS. Il propose les diagnostics les plus probables pour un scanner thoracique à partir d'une base de données de 6542 scanners thoraciques labellisés. © Röhrich et al, European Radiology | CC BY 4.0 (no changes made)

Un système de recherche d'images basé sur le contenu entraîne une diminution du temps de lecture de 31 % des scanners thoraciques de patients présentant une pneumopathie interstitielle diffuse, d'après une étude autrichienne publiée le 2 juillet dans European Radiology [1]. L'utilisation du logiciel est en outre associée à une tendance à une meilleure précision diagnostique.

Un manque d'évaluation en pratique clinique

Les systèmes de recherche d'images basés sur le contenu analysent de façon directe les caractéristiques d’un cliché puis trouvent des images aux caractéristiques voisines dans une base de données. Plus connus sous leur acronyme anglais CBIRS (Content-based image retrieval systems), ils permettent à partir du PACS de relier « en direct » les images observées à des cas similaires, voire à des ressources pédagogiques susceptibles d'éclairer le diagnostic comme Radiopaedia. Problème : en vogue, la recherche sur les CBIRS souffre du manque d'évaluation des bénéfices de ces logic

Il vous reste 67% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Röhrich S., Heidinger B. H., Prayer F., « Impact of a content-based image retrieval system on the interpretation of chest CTs of patients with diffuse parenchymal lung disease », European Radiology, juillet 2022. DOI : 10.1007/s00330-022-08973-3.
  2. Choe J., Hang H. J., Seo J. B. et coll., « Content-based image retrieval by using deep learning for interstitial lung disease diagnosis with chest CT », Radiology, octobre 2021, vol. 302, n° 1. DOI : 10.1007/s00330-022-08973-3.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
20 Nov

16:01

Les séquences ciné en IRM cardiaque reconstruites par apprentissage profond et acquises sur trois cycles cardiaques permettent de réduire le temps d’acquisition de plus de 50 % par rapport à la séquence référence sans apprentissage profond, et le tout sans différence dans la qualité d'image, selon une étude prospective menée sur 55 volontaires sains en IRM 1,5 T.
Docteur Imago

GRATUIT
VOIR