Détection opportuniste

Un modèle d’apprentissage profond repère le diabète de type 2 sur des radiographies thoraciques

Dans une étude parue le 7 juillet dans Nature Communications, des chercheurs américains ont développé une intelligence artificielle capable de détecter de manière incidente le diabète de type 2 à partir d'une radiographie thoracique. Testée sur une cohorte prospective, l'IA a atteint une aire sous la courbe ROC de 0,84.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/09/23 à 17:00 Lecture 3 min.

Le modèle d'apprentissage profond a repéré le diabète de type 2 avec une aire sous la courbe ROC de 0,84 dans la cohorte prospective. © Pyrros et coll. | Nature Communications

Le diabète de type 2 sera-t-il à l'avenir un incidentalome comme un autre ? C'est ce que semble suggérer une étude américaine parue début juillet dans Nature Communications [1]. Maladie multifactorielle en progression dans les pays développés avec une prévalence française estimée à 5 %, l'ampleur réelle du diabète de type 2 est difficile à évaluer : de fait, selon l'Inserm, 20 à 30 % des adultes diabétiques ne sont pas diagnostiqués.

Une maladie précoce difficile à repérer

Si le taux d’hémoglobine glyquée et la mesure de la glycémie à jeun posent le diagnostic, il reste difficile de déterminer quels sujets sont susceptibles de présenter un diabète de type 2 pour les orienter vers un test diagnostique, notamment à un stade précoce. Des chercheurs américains ont donc eu l'idée d'employer un modèle d'apprentissage profond afin de détecter les patients à risque de diabète de type 2 de manière opportuniste sur des radiographies thoraciques.

Entraînement sur 153 168 radiographies de patie

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Pyrros A., Borstelmann S. M., Mantravadi R. et coll., « Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs », Nature Communications, 7 juillet 2023. DOI : 10.1038/s41467-023-39631-x.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

28 Oct

16:00

Les radiologues universitaires ayant une carrière active en recherche déclarent disposer plus fréquemment des ressources nécessaires pour la recherche (temps, ressources financières, motivation) que les radiologues moins actifs dans ce domaine (étude).

13:47

La quatorzième édition de la Journée mondiale de la radiologie aura lieu le 8 novembre 2025. L'objectif de cette initiative est de mieux faire connaître la valeur ajoutée de la radiologie et d'améliorer la compréhension du grand public sur le rôle essentiel des professionnels de l'imagerie dans le parcours de soins.

7:30

Des chercheurs chinois ont développé un modèle basé sur l'apprentissage profond pour générer des caractéristiques propres à la tomosynthèse à partir d'images de mammographie numérique. Il a permis d'améliorer la précision diagnostique et la caractérisation des lésions, assurent-ils dans European Journal of Radiology.
27 Oct

16:00

Dans un communiqué daté du 22 octobre 2025, le Conseil national de l'Ordre des médecins critique le projet de loi de financement de la sécurité sociale pour 2026. « L’intérêt du patient est relégué derrière la logique financière », juge-t-il, appelant à une « consultation élargie ».
Docteur Imago

GRATUIT
VOIR