Détection opportuniste

Un modèle d’apprentissage profond repère le diabète de type 2 sur des radiographies thoraciques

Dans une étude parue le 7 juillet dans Nature Communications, des chercheurs américains ont développé une intelligence artificielle capable de détecter de manière incidente le diabète de type 2 à partir d'une radiographie thoracique. Testée sur une cohorte prospective, l'IA a atteint une aire sous la courbe ROC de 0,84.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/09/23 à 17:00 Lecture 3 min.

Le modèle d'apprentissage profond a repéré le diabète de type 2 avec une aire sous la courbe ROC de 0,84 dans la cohorte prospective. © Pyrros et coll. | Nature Communications

Le diabète de type 2 sera-t-il à l'avenir un incidentalome comme un autre ? C'est ce que semble suggérer une étude américaine parue début juillet dans Nature Communications [1]. Maladie multifactorielle en progression dans les pays développés avec une prévalence française estimée à 5 %, l'ampleur réelle du diabète de type 2 est difficile à évaluer : de fait, selon l'Inserm, 20 à 30 % des adultes diabétiques ne sont pas diagnostiqués.

Une maladie précoce difficile à repérer

Si le taux d’hémoglobine glyquée et la mesure de la glycémie à jeun posent le diagnostic, il reste difficile de déterminer quels sujets sont susceptibles de présenter un diabète de type 2 pour les orienter vers un test diagnostique, notamment à un stade précoce. Des chercheurs américains ont donc eu l'idée d'employer un modèle d'apprentissage profond afin de détecter les patients à risque de diabète de type 2 de manière opportuniste sur des radiographies thoraciques.

Entraînement sur 153 168 radiographies de patie

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Pyrros A., Borstelmann S. M., Mantravadi R. et coll., « Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs », Nature Communications, 7 juillet 2023. DOI : 10.1038/s41467-023-39631-x.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

29 Jan

16:21

Alain Luciani, PU-PH au GHU Henri-Mondor (94) a été élu futur président de la Société française de radiologie (SFR) pour le mandat 2027 - 2031 ce 29 janvier, annonce la SFR.

15:25

Une étude publiée dans JACR compare l’utilisation des examens d’imagerie chez des enfants en consultation externe dans les hôpitaux pédiatriques et non pédiatriques à partir de données Medicaid 2019. Elle montre que les hôpitaux non pédiatriques utilisent plus fréquemment les examens exposant aux radiations ionisantes, tels que les radiographies et scanners, tandis que les hôpitaux pédiatriques privilégient davantage l’échographie et l’IRM.  

13:18

Une étude publiée dans Emergency Radiology rapporte un cas d’hémorragie sous-arachnoïdienne avec anévrismes multiples, dans lequel l’imagerie conventionnelle ne permettait pas d’identifier l’anévrisme rompu. L’IRM de la paroi vasculaire a mis en évidence un rehaussement focal de l’anévrisme du sommet basilaire, permettant un traitement endovasculaire ciblé et soulignant l’intérêt de cette technique dans les situations diagnostiques complexes.  

7:17

Une étude prospective compare l’efficacité de l’échographie mammaire automatisée (ABUS) et de l’échographie manuelle (HHUS) en seconde intention pour détecter des lésions identifiées en IRM mammaire. Bien que la HHUS détecte significativement plus de lésions, les deux techniques présentent une sensibilité similaire, l’ABUS ayant une valeur prédictive positive plus élevées. Ces résultats démontrent que les deux méthodes sont complémentaires et ont le potentiel d’augmenter le taux de détection des lésions lorsqu’elles sont utilisées conjointement.    
Docteur Imago

GRATUIT
VOIR