Détection opportuniste

Un modèle d’apprentissage profond repère le diabète de type 2 sur des radiographies thoraciques

Dans une étude parue le 7 juillet dans Nature Communications, des chercheurs américains ont développé une intelligence artificielle capable de détecter de manière incidente le diabète de type 2 à partir d'une radiographie thoracique. Testée sur une cohorte prospective, l'IA a atteint une aire sous la courbe ROC de 0,84.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/09/23 à 17:00 Lecture 3 min.

Le modèle d'apprentissage profond a repéré le diabète de type 2 avec une aire sous la courbe ROC de 0,84 dans la cohorte prospective. © Pyrros et coll. | Nature Communications

Le diabète de type 2 sera-t-il à l'avenir un incidentalome comme un autre ? C'est ce que semble suggérer une étude américaine parue début juillet dans Nature Communications [1]. Maladie multifactorielle en progression dans les pays développés avec une prévalence française estimée à 5 %, l'ampleur réelle du diabète de type 2 est difficile à évaluer : de fait, selon l'Inserm, 20 à 30 % des adultes diabétiques ne sont pas diagnostiqués.

Une maladie précoce difficile à repérer

Si le taux d’hémoglobine glyquée et la mesure de la glycémie à jeun posent le diagnostic, il reste difficile de déterminer quels sujets sont susceptibles de présenter un diabète de type 2 pour les orienter vers un test diagnostique, notamment à un stade précoce. Des chercheurs américains ont donc eu l'idée d'employer un modèle d'apprentissage profond afin de détecter les patients à risque de diabète de type 2 de manière opportuniste sur des radiographies thoraciques.

Entraînement sur 153 168 radiographies de patie

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Pyrros A., Borstelmann S. M., Mantravadi R. et coll., « Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs », Nature Communications, 7 juillet 2023. DOI : 10.1038/s41467-023-39631-x.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

17 Jan

16:31

Un arrêté publié dans le Journal officiel du 14 janvier 2025 a inscrit des électrodes aiguilles de radiofréquence COOL-TIP E SERIES® (MEDTRONIC France) sur la liste des produits et prestations remboursables.

12:04

Un protocole abrégé d'IRM (T2 + DWI + HBP) s'est montré prometteur pour la détection du carcinome hépatocellulaire, avec une efficacité diagnostique « relativement élevée », dans le cadre d'une étude présentée dans Academic Radiology.

7:30

Chez les femmes ayant des antécédents personnels de cancer du sein, la surveillance par IRM était associée à une probabilité plus faible de cancer du sein secondaire avancé avant et après l’appariement par score de propension (PSM), conclut une étude parue dans Radiography.
16 Jan

15:53

L'implication des radiologues dans l'évaluation par les pairs du contourage des cibles des traitements de radiothérapie est associée à une augmentation significative du taux de changements cliniquement significatifs de ces cibles, selon une méta-analyse parue dans JAMA Network Open.
Docteur Imago

GRATUIT
VOIR