Coroscanner

Un nouveau biomarqueur basé sur l’IA pour prédire le risque cardiaque

Une équipe britannique a développé un biomarqueur d’imagerie basé sur l’intelligence artificielle. Cette méthode permettrait de détecter les signes précoces associés à la coronaropathie et de prédire une crise cardiaque 5 ans avant sa survenue.

icon réservé aux abonnésArticle réservé aux abonnés
Le 02/10/19 à 15:00, mise à jour aujourd'hui à 14:11 Lecture 1 min.

Les chercheurs d'Oxford ont analysé le profil radiomique du tissu adipeux périvasculaire coronarien pour développer un dispositif capable d’améliorer la prédiction des risques cardiaques (photo d’illustration) (photo d'illustration). CC0 Public Domain/Pexels.com

Des chercheurs de l’université d’Oxford (Royaume-Uni) ont développé une nouvelle méthode basée sur l'intelligence artificielle pour prédire le risque cardiaque. Dans leurs travaux, les scientifiques ont analysé le profil radiomique du tissu adipeux périvasculaire (PVAT) coronarien.

Au-delà de l'inflation

Grâce à l’apprentissage profond, l’équipe menée par le professeur de cardiologie Charalambos Antoniades, a mis au point un biomarqueur d’imagerie baptisé « fat radiomic profile » (FRP). Ce dernier permettrait de détecter les changements structurels périvasculaires associés à la coronaropathie, au-delà de l’inflammation.

Analyser les caractéristiques radiomiques sur les scanners

Les chercheurs présentent leurs travaux dans le numéro de septembre de la revue European Heart Journal [1]. Dans un premier temps, ils ont collecté des biopsies de tissu adipeux de 167 patients qui avaient subi une chirurgie cardiaque. Ils ont analysé l'expression de gènes liés à l'inflammation et à la fibrose, asso

Il vous reste 62% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Bibliographie

  1. Oikonomou E. K., Williams M. C., Kotanidis C. P. et coll., « A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography », European Heart Journal, 3 septembre 2019. DOI : https://doi.org/10.1093/eurheartj/ehz592.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
20 Nov

16:01

Les séquences ciné en IRM cardiaque reconstruites par apprentissage profond et acquises sur trois cycles cardiaques permettent de réduire le temps d’acquisition de plus de 50 % par rapport à la séquence référence sans apprentissage profond, et le tout sans différence dans la qualité d'image, selon une étude prospective menée sur 55 volontaires sains en IRM 1,5 T.
Docteur Imago

GRATUIT
VOIR