Coroscanner

Un nouveau biomarqueur basé sur l’IA pour prédire le risque cardiaque

Une équipe britannique a développé un biomarqueur d’imagerie basé sur l’intelligence artificielle. Cette méthode permettrait de détecter les signes précoces associés à la coronaropathie et de prédire une crise cardiaque 5 ans avant sa survenue.

icon réservé aux abonnésArticle réservé aux abonnés
Le 02/10/19 à 15:00, mise à jour aujourd'hui à 15:14 Lecture 1 min.

Les chercheurs d'Oxford ont analysé le profil radiomique du tissu adipeux périvasculaire coronarien pour développer un dispositif capable d’améliorer la prédiction des risques cardiaques (photo d’illustration) (photo d'illustration). CC0 Public Domain/Pexels.com

Des chercheurs de l’université d’Oxford (Royaume-Uni) ont développé une nouvelle méthode basée sur l'intelligence artificielle pour prédire le risque cardiaque. Dans leurs travaux, les scientifiques ont analysé le profil radiomique du tissu adipeux périvasculaire (PVAT) coronarien.

Au-delà de l'inflation

Grâce à l’apprentissage profond, l’équipe menée par le professeur de cardiologie Charalambos Antoniades, a mis au point un biomarqueur d’imagerie baptisé « fat radiomic profile » (FRP). Ce dernier permettrait de détecter les changements structurels périvasculaires associés à la coronaropathie, au-delà de l’inflammation.

Analyser les caractéristiques radiomiques sur les scanners

Les chercheurs présentent leurs travaux dans le numéro de septembre de la revue European Heart Journal [1]. Dans un premier temps, ils ont collecté des biopsies de tissu adipeux de 167 patients qui avaient subi une chirurgie cardiaque. Ils ont analysé l'expression de gènes liés à l'inflammation et à la fibrose, asso

Il vous reste 62% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Oikonomou E. K., Williams M. C., Kotanidis C. P. et coll., « A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography », European Heart Journal, 3 septembre 2019. DOI : https://doi.org/10.1093/eurheartj/ehz592.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

31 Mar

16:00

22 % des médecins répondants à une enquête du Conseil de l'Ordre considèrent leur prise en charge des patients en situation de handicap comme insuffisante ou peu suffisante en raison du manque de temps, de moyens humains et matériels ou encore le manque de formation ou l'inadaptabilité des locaux. 35 % considèrent que l'accès aux soins des patients en situation de handicap est difficile.

13:00

Un décret publié le 19 mars détermine les modalités d'encadrement de l'activité de remise en bon état d'usage de certaines catégories de dispositifs médicaux à usage individuel. La liste des dispositifs concernés sera définie par arrêté.

7:30

La Haute Autorité de santé (HAS) a publié le 20 mars une mise à jour de son Guide pour l'évaluation des infrastructures de simulation en santé, élaborée avec la Société francophone de simulation en santé. Ce document s'adresse aux structures de simulation et aux plateformes de simulation en santé qui souhaitent s'inscrire dans une démarche d'amélioration continue de la qualité, indique la HAS.
28 Mar

16:37

La SFR met en place l’application mobile SFR-JUISCI permettant aux utilisateurs d’accéder aux récentes recherches en radiologie. L’appli est à télécharger via la lien : https://lnkd.in/eW4i956c
Docteur Imago

GRATUIT
VOIR