intelligence artificielle

Un outil d’IA démontre une sensibilité de 99 % pour identifier les radiographies thoraciques anormales

Un outil d’IA automatisé disponible dans le commerce a atteint une sensibilité de 99,1 % dans l’identification des radiographies thoraciques anormales. Selon une étude, cette performance peut permettre de réduire la charge de travail des radiologues.

icon réservé aux abonnésArticle réservé aux abonnés
Le 30/03/23 à 13:30, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

Les comptes rendus des radiologues avaient une sensibilité plus faible que l’outil d’IA pour les radiographies thoraciques anormales, soulignent les auteurs. L'IA n'a en effet donné qu'un seul faux négatif. © Plesner L. L. et coll. | RSNA

Dans un contexte de pénurie mondiale croissante de radiologues, des solutions d’intelligence artificielle permettant d'automatiser la lecture des radiographies thoraciques promettent d’alléger la charge de travail des professionnels de santé. Une étude présentée dans la revue Radiology a évalué un de ces outils disponibles dans le commerce, qui a montré une sensibilité supérieure à celle des radiologues pour identifier les radiographies thoraciques anormales [1].

Une étude multicentrique incluant 1 529 patients

Cette étude rétrospective multicentrique a été réalisée dans quatre hôpitaux au Danemark. 1 529 patients adultes ayant passé une radiographie thoracique postéroantérieure dans les services d'urgence, ambulatoires, ou à l'hôpital, ont été inclus.

L’outil d’IA Oxipit évalué

Trois radiologues ont passé ces examens en revue et les ont étiquetés pour établir un standard de référence basé sur trois catégories : « critique », « autres remarques », ou « normale » (aucune anomalie). L’outil

Il vous reste 72% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Bibliographie

  1. Plesner L. L., Müller F. C., Nybing J. D. et coll., « Autonomous chest radiograph reporting using AI: estimation of clinical impact », Radiology, epub 7 mars 2023. DOI : 10.1148/radiol.222268

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

21 Fév

13:40

Selon une étude publiée dans Radiology, un algorithme d’apprentissage profond disponible dans le commerce peut permettre des examens IRM de l’épaule de bonne qualité en sept minutes.

7:37

Le parlement a adopté définitivement le budget 2025 de la Sécurité sociale ce 17 février. Il prévoit une hausse des dépenses d’Assurance maladie de 3,4 %, pour atteindre un montant de 265 milliards d’euros.
20 Fév

16:01

L’imagerie des paramètres d’atténuation par ultrasons peut être utilisée pour le dépistage clinique afin d’évaluer la prévalence de la MASLD chez les patients en surpoids ou obèses et de suivre de manière dynamique la progression de la maladie, conclut une étude publiée dans Clinical radiology.

13:31

Le modèle de langage appelé Axpert démontre un potentiel de marquage automatique de l’entérocolite nécrosante sur les comptes-rendus de radiographie abdominale infantile. Cette méthode de marquage peut ainsi servir de cadre pour d’autres modalités d’imagerie et maladies chez les enfants, et les maladies rares chez l’adulte, suggère une étude publiée dans JAMIA Open.
Docteur Imago

GRATUIT
VOIR