intelligence artificielle

Un outil d’IA démontre une sensibilité de 99 % pour identifier les radiographies thoraciques anormales

Un outil d’IA automatisé disponible dans le commerce a atteint une sensibilité de 99,1 % dans l’identification des radiographies thoraciques anormales. Selon une étude, cette performance peut permettre de réduire la charge de travail des radiologues.

icon réservé aux abonnésArticle réservé aux abonnés
Le 30/03/23 à 13:30, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

Les comptes rendus des radiologues avaient une sensibilité plus faible que l’outil d’IA pour les radiographies thoraciques anormales, soulignent les auteurs. L'IA n'a en effet donné qu'un seul faux négatif. © Plesner L. L. et coll. | RSNA

Dans un contexte de pénurie mondiale croissante de radiologues, des solutions d’intelligence artificielle permettant d'automatiser la lecture des radiographies thoraciques promettent d’alléger la charge de travail des professionnels de santé. Une étude présentée dans la revue Radiology a évalué un de ces outils disponibles dans le commerce, qui a montré une sensibilité supérieure à celle des radiologues pour identifier les radiographies thoraciques anormales [1].

Une étude multicentrique incluant 1 529 patients

Cette étude rétrospective multicentrique a été réalisée dans quatre hôpitaux au Danemark. 1 529 patients adultes ayant passé une radiographie thoracique postéroantérieure dans les services d'urgence, ambulatoires, ou à l'hôpital, ont été inclus.

L’outil d’IA Oxipit évalué

Trois radiologues ont passé ces examens en revue et les ont étiquetés pour établir un standard de référence basé sur trois catégories : « critique », « autres remarques », ou « normale » (aucune anomalie). L’outil

Il vous reste 72% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Plesner L. L., Müller F. C., Nybing J. D. et coll., « Autonomous chest radiograph reporting using AI: estimation of clinical impact », Radiology, epub 7 mars 2023. DOI : 10.1148/radiol.222268

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

31 Mar

16:00

22 % des médecins répondants à une enquête du Conseil de l'Ordre considèrent leur prise en charge des patients en situation de handicap comme insuffisante ou peu suffisante en raison du manque de temps, de moyens humains et matériels ou encore le manque de formation ou l'inadaptabilité des locaux. 35 % considèrent que l'accès aux soins des patients en situation de handicap est difficile.

13:00

Un décret publié le 19 mars détermine les modalités d'encadrement de l'activité de remise en bon état d'usage de certaines catégories de dispositifs médicaux à usage individuel. La liste des dispositifs concernés sera définie par arrêté.

7:30

La Haute Autorité de santé (HAS) a publié le 20 mars une mise à jour de son Guide pour l'évaluation des infrastructures de simulation en santé, élaborée avec la Société francophone de simulation en santé. Ce document s'adresse aux structures de simulation et aux plateformes de simulation en santé qui souhaitent s'inscrire dans une démarche d'amélioration continue de la qualité, indique la HAS.
28 Mar

16:37

La SFR met en place l’application mobile SFR-JUISCI permettant aux utilisateurs d’accéder aux récentes recherches en radiologie. L’appli est à télécharger via la lien : https://lnkd.in/eW4i956c
Docteur Imago

GRATUIT
VOIR