intelligence artificielle

Un outil d’IA démontre une sensibilité de 99 % pour identifier les radiographies thoraciques anormales

Un outil d’IA automatisé disponible dans le commerce a atteint une sensibilité de 99,1 % dans l’identification des radiographies thoraciques anormales. Selon une étude, cette performance peut permettre de réduire la charge de travail des radiologues.

icon réservé aux abonnésArticle réservé aux abonnés
Le 30/03/23 à 13:30, mise à jour le 11/09/23 à 13:23 Lecture 2 min.

Les comptes rendus des radiologues avaient une sensibilité plus faible que l’outil d’IA pour les radiographies thoraciques anormales, soulignent les auteurs. L'IA n'a en effet donné qu'un seul faux négatif. © Plesner L. L. et coll. | RSNA

Dans un contexte de pénurie mondiale croissante de radiologues, des solutions d’intelligence artificielle permettant d'automatiser la lecture des radiographies thoraciques promettent d’alléger la charge de travail des professionnels de santé. Une étude présentée dans la revue Radiology a évalué un de ces outils disponibles dans le commerce, qui a montré une sensibilité supérieure à celle des radiologues pour identifier les radiographies thoraciques anormales [1].

Une étude multicentrique incluant 1 529 patients

Cette étude rétrospective multicentrique a été réalisée dans quatre hôpitaux au Danemark. 1 529 patients adultes ayant passé une radiographie thoracique postéroantérieure dans les services d'urgence, ambulatoires, ou à l'hôpital, ont été inclus.

L’outil d’IA Oxipit évalué

Trois radiologues ont passé ces examens en revue et les ont étiquetés pour établir un standard de référence basé sur trois catégories : « critique », « autres remarques », ou « normale » (aucune anomalie). L’outil

Il vous reste 72% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Plesner L. L., Müller F. C., Nybing J. D. et coll., « Autonomous chest radiograph reporting using AI: estimation of clinical impact », Radiology, epub 7 mars 2023. DOI : 10.1148/radiol.222268

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

09 Déc

7:23

L'arrêté du 5 décembre 2025 fixe à 295 le nombre maximum d'autorisations d'exercice des personnes titulaires d'un diplôme permettant l'exercice, dans le pays d'obtention de ce diplôme, de la profession de médecin, pour la période du 15 décembre 2025 au 15 décembre 2026. Pour la radiologie, le nombre d'autorisations est fixé à 3. Ces personnes doivent avoir satisfait à des épreuves de vérification des connaissances, précise l'arrêté.
08 Déc

16:12

Le scanner double-énergie en scanner n’apporte pas de supériorité technique constante par rapport au scanner standard pour la résolution en contraste des métastases hépatiques hypovasculaires, selon une méta-analyse.

11:00

Bayer a présenté au RSNA les premiers résultats pédiatriques de son étude QUANTI, montrant que son agent de contraste IRM gadoquatrane offre un profil pharmacocinétique et une sécurité comparables à ceux de l’adulte, tout en réduisant de 60 % la dose (communiqué).

7:10

Jeffrey S. Klein a été nommé le nouveau président de la Société nord-américaine de radiologie (RSNA).
Docteur Imago

GRATUIT
VOIR