Anticipation

ChatGPT, financement de l’innovation, limites techniques… Quel(s) avenir(s) pour l’IA en radiologie ?

À l'heure de ChatGPT et des logiciels d'aide au diagnostic, quelles conséquences pourrait avoir le développement de l'IA pour les radiologues à court et moyen terme ? C'est sur cette question que le radiologue grenoblois Arnaud Attyé a disserté à l'occasion de la cinquantième édition du congrès de la SFNR, le 30 mars 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/06/23 à 7:00, mise à jour le 11/09/23 à 13:24 Lecture 5 min.

Dans son ouvrage I.A., la plus grande mutation de l'histoire, l'ancien directeur de Google China Kai-Fu Lee classe la radiologie parmi les professions menacées par le développement de l'IA. « La sécurisation de notre métier passe par la personnalisation des soins et une sociabilité accrue », argue Arnaud Attyé. © François Mallordy | diaporama Arnaud Attyé

Pour entamer sa présentation sur « les scénarios de l'avenir de l'IA en radiologie » lors du congrès annuel de la Société française de neuroradiologie (SFNR), ce 30 mars 2023, Arnaud Attyé, radiologue au CH de Grenoble et fondateur de la start-up médicale GeodAIsics, a montré « la slide qu'utilisent les entreprises d'IA quand elles essaient de vendre leurs logiciels ». « En 10 ans, le nombre d’images en coupes par patient a été multiplié par 5. Les radiologues interprètent en moyenne une image toutes les 3 secondes, 46 % d'entre eux présentent des signes de burnout, et on estime à 40 millions par an le nombre d’erreurs diagnostiques en imagerie médicale, soit 3 à 5 % des examens », récite-t-il.

« Une IA entraînée peut reconnaître l’origine ethnique d'un patient »

Un peu vite présentée par des acteurs de la tech en sauveuse des radiologues, l'IA présente toutefois de sérieux inconvénients, pointe Arnaud Attyé. « À l'heure actuelle, les meilleurs informaticiens travaillant sur les réseaux

Il vous reste 86% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Gichoya J. W., Banerjee I., Bhimireddy A. R. et coll., « AI recognition of patient race in medical imaging: a modelling study », The Lancet Digital Health, juin 2022, vol. 4, n° 6, p. e406-e414. DOI : 10.1016/S2589-7500(22)00063-2.
  2. Hirano H., Koga K. & Takemoto K., « Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks », Plos One, epub 17 décembre 2020. DOI : 10.1371/journal.pone.0243963.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

04 Déc

16:10

Une étude, présentée au RSNA, a révélé que l'obésité abdominale, parfois appelée « ventre à bière », est associée à des modifications de la structure cardiaque en plus du poids, en particulier chez les hommes. Ces résultat mettent également en lumière les mesures que les patients et les médecins peuvent prendre pour identifier les risques potentiels et intervenir plus tôt afin de protéger le cœur.

11:00

La forme du muscle grand fessier change de différentes manières avec l’âge, le mode de vie, l’ostéoporose ou le diabète de type 2, et ces changements diffèrent entre les femmes et les hommes, selon une nouvelle étude présentée lors du RSNA. (Etude)

7:11

Un modèle de deep learning a amélioré la qualité d'image de l'IRM à faible dose de contraste pour l'imagerie de la citerne de l'angle ponto-cérébelleux, permettant la détection des lésions et la caractérisation diagnostique avec 10 à 30 % de la dose standard (étude).
03 Déc

14:50

Au RSNA 2025, GE Healthcare présente ses deux nouvelles IRM Signa Bolt et Signa Sprint, ainsi que son scanner à comptage photonique baptisé Photonova Spectra.
Docteur Imago

GRATUIT
VOIR