Anticipation

ChatGPT, financement de l’innovation, limites techniques… Quel(s) avenir(s) pour l’IA en radiologie ?

À l'heure de ChatGPT et des logiciels d'aide au diagnostic, quelles conséquences pourrait avoir le développement de l'IA pour les radiologues à court et moyen terme ? C'est sur cette question que le radiologue grenoblois Arnaud Attyé a disserté à l'occasion de la cinquantième édition du congrès de la SFNR, le 30 mars 2023.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/06/23 à 7:00, mise à jour le 11/09/23 à 13:24 Lecture 5 min.

Dans son ouvrage I.A., la plus grande mutation de l'histoire, l'ancien directeur de Google China Kai-Fu Lee classe la radiologie parmi les professions menacées par le développement de l'IA. « La sécurisation de notre métier passe par la personnalisation des soins et une sociabilité accrue », argue Arnaud Attyé. © François Mallordy | diaporama Arnaud Attyé

Pour entamer sa présentation sur « les scénarios de l'avenir de l'IA en radiologie » lors du congrès annuel de la Société française de neuroradiologie (SFNR), ce 30 mars 2023, Arnaud Attyé, radiologue au CH de Grenoble et fondateur de la start-up médicale GeodAIsics, a montré « la slide qu'utilisent les entreprises d'IA quand elles essaient de vendre leurs logiciels ». « En 10 ans, le nombre d’images en coupes par patient a été multiplié par 5. Les radiologues interprètent en moyenne une image toutes les 3 secondes, 46 % d'entre eux présentent des signes de burnout, et on estime à 40 millions par an le nombre d’erreurs diagnostiques en imagerie médicale, soit 3 à 5 % des examens », récite-t-il.

« Une IA entraînée peut reconnaître l’origine ethnique d'un patient »

Un peu vite présentée par des acteurs de la tech en sauveuse des radiologues, l'IA présente toutefois de sérieux inconvénients, pointe Arnaud Attyé. « À l'heure actuelle, les meilleurs informaticiens travaillant sur les réseaux

Il vous reste 86% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Bibliographie

  1. Gichoya J. W., Banerjee I., Bhimireddy A. R. et coll., « AI recognition of patient race in medical imaging: a modelling study », The Lancet Digital Health, juin 2022, vol. 4, n° 6, p. e406-e414. DOI : 10.1016/S2589-7500(22)00063-2.
  2. Hirano H., Koga K. & Takemoto K., « Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks », Plos One, epub 17 décembre 2020. DOI : 10.1371/journal.pone.0243963.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

7:30

Le Sénat a adopté le 19 novembre un amendement gouvernemental au PLFSS 2025 qui prévoit d'exonérer de cotisations pour l'assurance vieillesse les médecins en situation de cumul emploi-retraite qui exercent dans les zones sous-denses. La Caisse autonome de retraite des médecins français (CARMF) s'alarme dans un communiqué des conséquences de cette mesure.

13:31

Un réseau de neurones convolutifs (CNN) a été entraîné à détecter automatiquement les zones floues en mammographie dans des régions pertinentes pour le diagnostic. Ce modèle, s'il était implémenté en pratique clinique, pourrait fournir un retour utile aux MERM afin de réaliser rapidement de meilleures prises de vue qui soient de haute qualité, selon une étude rétrospective.

7:31

Un état de l'art en français sur la biopsie pulmonaire percutanée sous scanner présentant ses indications, ses contre-indications et les bonnes pratiques dans ce domaine a été publié le 14 novembre en accès libre dans le Journal d'imagerie diagnostique et interventionnelle.
Docteur Imago

GRATUIT
VOIR