Développement des algorithmes

Comment améliorer les challenges en intelligence artificielle ?

Au congrès de l’ECR 2020, Lena Maier-Hein, professeur de sciences informatiques, a proposé de faire évoluer les méthodes de conception et de compte rendu des challenges d’analyse automatique d’images biomédicales. Leur manque de rigueur et de précision perturberait aujourd’hui l’interprétation et la reproductibilité des résultats.

icon réservé aux abonnésArticle réservé aux abonnés
Le 18/07/20 à 15:00, mise à jour aujourd'hui à 14:12 Lecture 4 min.

Dans les challenges d'intelligence artificielle en imagerie médicale, « le gagnant n’est pas toujours le meilleur », affirme Lena Maier-Hein, qui dirige le département des interventions médicales assistées par ordinateur du Centre allemand de recherche sur le cancer (photo d'illustration). © Carla Ferrand

Les challenges se multiplient ces dernières années en intelligence artificielle appliquée à l’imagerie médicale. Mercredi 15 juillet, une session du Congrès européen de radiologie (ECR) s’est intéressée à la méthodologie de ces concours. De façon classique, leurs organisateurs définissent une problématique, une base de données, et évaluent objectivement les performances des algorithmes développés par les participants. Mais pour Lena Maier-Hein, qui dirige le département des interventions médicales assistées par ordinateur du Centre allemand de recherche sur le cancer, « le gagnant n’est pas toujours le meilleur ». De nombreuses erreurs viendraient en effet perturber les classements.

Bien définir ses indicateurs

Elles commenceraient dès la conception des challenges, affirme cette professeure de sciences informatiques, à l’appui d’une étude internationale qu’elle a dirigée et qui a analysé plus de 500 de ces compétitions [1]. « Leurs concepteurs ne réfléchissent pas assez aux indicateurs d

Il vous reste 84% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Maier-Hein L., Eisenmann M., Reinke A. et coll., « Why rankings of biomedical image analysis competitions should be interpreted with care », Nature Communications, 2018, vol. 9. DOI : 10.1038/s41467-018-07619-7.
  2. Maier-Hein L., Reinke A., Kozubek M. et coll., « BIAS: transparent reporting of biomedical image analysis challenges », Med Image Anal, 2020.
  3. Wiesenfarth M., Reinke A., Landman B. A. et coll., « Methods and open-source tookits for analyzing and visualizing challenge results », ArXiv, 10 novembre 2019. https://arxiv.org/pdf/1910.05121v1.pdf. Consulté le 17 juillet 2020.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

21 Nov

15:34

Des chercheurs ont examiné l’association entre la charge allostatique (AL), un indicateur de dysrégulation physiologique liée au stress, et la présence de pathologie maligne lors de biopsies mammaires guidées par imagerie. Les résultats suggèrent qu’une AL plus élevée est liée à un risque accru de pathologie maligne, ce qui pourrait guider des stratégies de dépistage personnalisées, indique une étude publiée dans JACR.

13:17

L’IRM rapide avec la reconstruction par apprentissage profond (DLR) améliore la qualité d’image et la précision diagnostique pour l’appendicite complexe par rapport à l’IRM non DLR et à la tomographie par contraste, offrant une alternative précieuse pour les patients sensibles aux radiations. (Étude).

7:09

Une étude évaluant plusieurs grands modèles de langage a montré que le modèle OpenAI o3 obtenait la meilleure précision à l’examen national japonais des techniciens en radiologie, atteignant 90 % de réussite.
20 Nov

15:06

Une étude montre que l’angioscanner coronaire à détecteur photonique, réalisée avec des doses réduites de rayonnement et de produit de contraste, offre une excellente qualité d’image et une précision diagnostique élevée, en particulier avec les reconstructions en VMI à 55 keV. Cette technique permet de détecter avec fiabilité les sténoses obstructives et les resténoses intrastent chez des patients souffrant d’une maladie coronarienne associée à l’inflammation.
Docteur Imago

GRATUIT
VOIR