Intelligence artificielle

Des outils de deep learning pour chaque besoin en imagerie cardiovasculaire

Un webinaire organisé par le CERF s'est intéressé aux applications de l'IA en imagerie cardiovasculaire. À chaque étape du processus, de l'acquisition au compte rendu, les outils d'IA ont un rôle à jouer mais les solutions développées doivent encore être perfectionnées.

icon réservé aux abonnésArticle réservé aux abonnés
Le 16/02/21 à 16:00, mise à jour aujourd'hui à 14:14 Lecture 5 min.

Le webinaire du CERF sur les applications de l’IA en imagerie cardiovasculaire s’est intéressé à l’apport du deep learning aux différentes étapes du workflow (photo d'illustration). © C. F.

Le 8 février, le webinaire du Collège des enseignants en radiologie de France (CERF) sur les applications de l’intelligence artificielle (IA) en imagerie cardiovasculaire s’est intéressé à l’apport du deep learning (apprentissage profond) aux différentes étapes du workflow. « L’imagerie cardiaque a des spécificités qui entraînent des difficultés pour les radiologues et pour lesquelles l’IA peut donc avoir un intérêt », a introduit Axel Bartoli, radiologue à l’hôpital de la Timone – Assistance publique – Hôpitaux de Marseille (AP-HM). Les difficultés se manifestent dès l’acquisition, du fait des mouvements du cœur. En IRM, le positionnement des coupes est essentiel « pour voir des paramètres fonctionnels de bonne qualité ». Au coroscanner, la problématique vient de la dose de rayonnements.

L’étape obligatoire du post-traitement

L’autre spécificité de l’imagerie cardiaque est l’importance du post-traitement : « En IRM cardiaque, on va toujours faire de la segmentation pour obtenir des para

Il vous reste 86% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Hong J. H., Park E.-A., Lee W. et coll., « Incremental image noise reduction in coronary CT angiography using a deep learning-based technique with iterative reconstruction », Korean Journal of Radiology, octobre 2020, vol. 21, n° 10, p. 1165-1177. DOI : 10.3348/kjr.2020.0020.
  2. Bernard O., Lalande A., Zotti C. et coll., « Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved ? », IEEE Transactions on Medical Imaging, novembre 2018, vol. 37, n° 11, p. 2514-2525. DOI : 10.1109/TMI.2018.2837502.o.
  3. Bartoli A., Fournel J., Bentatou Z. et coll., « Deep learning-based automated segmentation of left ventricular trabeculations and myocardium on cardiac MR Images: a feasibility study », Radiology: Artificial Intelligence, janvier 2021, vol. 3, n° 1. DOI : 10.1148/ryai.2020200021.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

17 Fév

17:24

L'infection par le SARS-CoV-2 était associée à une progression plus rapide du volume des plaques d'athéromes et à une augmentation de l'incidence des plaques à haut risque au sein d'une cohorte de 803 patients.

14:23

L'IRM et le scanner montrent des performances prédictives comparables (sensibilité globale 66 % vs 82 %, spécificité globale 88 % vs 79 %) pour le diagnostic non invasif du carcinome hépatocellulaire macrotrabéculaire massif, selon une méta-analyse présentée dans Academic Radiology.

7:22

16 Fév

16:21

Un modèle linguistique à grande échelle entraîné par des chercheurs de l'université du Michigan (États-Unis) a démontré son potentiel pour le marquage automatique des cas d'entérocolite nécrosante sur les comptes rendus de radiographies abdominales de nourrissons. Étude.
Docteur Imago

GRATUIT
VOIR