Intelligence artificielle

L’apport du deep learning pour segmenter les trabéculations en IRM cardiaque

Des radiologues et des informaticiens ont développé un outil de segmentation automatique des trabéculations cardiaques. L’outil présenterait de meilleures performances que l’humain en termes de reproductibilité.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/01/21 à 16:00, mise à jour aujourd'hui à 14:12 Lecture 3 min.

Image d'IRM, segmentation manuelle dite « ground-truth », puis segmentation des trabéculations produite automatiquement par l'algorithme (10 secondes). © Axel Bartoli et coll.

Une étude multicentrique rétrospective française s’est intéressée aux performances de l'apprentissage profond (deep learning) pour mesurer et segmenter les trabéculations en IRM cardiaque. L’équipe de recherche a publié ses travaux au mois de novembre dans Radiology : Artificial Intelligence [1].

Un besoin d’outil de précision

Les chercheurs sont partis du constat que la mesure des trabéculations cardiaques devait s’appuyer sur des critères précis afin de mieux faire la part des choses : « À l’heure actuelle, quand on interprète une IRM cardiaque, on dit de façon un peu subjective que le patient présente des trabéculations, sans véritablement déterminer s’il y a un excès ou si cela reste dans les limites de la normale », expose Axel Bartoli, radiologue à la Timone (Assistance publique - Hôpitaux de Marseille) et auteur principal de l’étude. Ils ont donc développé un algorithme de deep learning pour opérer des segmentations et des mesures automatiques, et dépasser l'évaluation visuelle :

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Bartoli A., Fournel J., Bentatou Z. et coll., « Deep-Learning based automated segmentation of the left ventricular trabeculations and myocardium on cardiac MR images: a feasibility study », Radiology: Artificial Intelligence, novembre 2020. DOI : 10.1148/ryai.2020200021.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

06 Fév

16:08

Des chercheurs ont développé et validé un modèle de deep learning entièrement automatisé pour détecter et mesurer les masses surrénaliennes sur des scanners abdominaux injectés. Le modèle a le potentiel d’améliorer les taux de détection des lésions et de faciliter leur prise en charge précoce, indique l'étude.

13:06

Une étude publiée dans Radiology montre que le compte rendu structuré améliore l’efficacité des radiologues en réduisant le temps de rédaction et en recentrant l’attention visuelle sur l’image, par rapport au texte libre. L’ajout de l’intelligence artificielle augmente la précision diagnostique.

7:30

Une étude rétrospective montre que le score Node-RADS basé sur l’IRM offre une excellente précision diagnostique pour la détection des métastases ganglionnaires chez les patients atteints de cancer du rectum, avec une performance supérieure aux critères de taille et aux comptes rendus IRM classiques.
05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.
Docteur Imago

GRATUIT
VOIR