Intelligence artificielle

L’apport du deep learning pour segmenter les trabéculations en IRM cardiaque

Des radiologues et des informaticiens ont développé un outil de segmentation automatique des trabéculations cardiaques. L’outil présenterait de meilleures performances que l’humain en termes de reproductibilité.

icon réservé aux abonnésArticle réservé aux abonnés
Le 13/01/21 à 16:00, mise à jour hier à 14:15 Lecture 3 min.

Image d'IRM, segmentation manuelle dite « ground-truth », puis segmentation des trabéculations produite automatiquement par l'algorithme (10 secondes). © Axel Bartoli et coll.

Une étude multicentrique rétrospective française s’est intéressée aux performances de l'apprentissage profond (deep learning) pour mesurer et segmenter les trabéculations en IRM cardiaque. L’équipe de recherche a publié ses travaux au mois de novembre dans Radiology : Artificial Intelligence [1].

Un besoin d’outil de précision

Les chercheurs sont partis du constat que la mesure des trabéculations cardiaques devait s’appuyer sur des critères précis afin de mieux faire la part des choses : « À l’heure actuelle, quand on interprète une IRM cardiaque, on dit de façon un peu subjective que le patient présente des trabéculations, sans véritablement déterminer s’il y a un excès ou si cela reste dans les limites de la normale », expose Axel Bartoli, radiologue à la Timone (Assistance publique - Hôpitaux de Marseille) et auteur principal de l’étude. Ils ont donc développé un algorithme de deep learning pour opérer des segmentations et des mesures automatiques, et dépasser l'évaluation visuelle :

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Bartoli A., Fournel J., Bentatou Z. et coll., « Deep-Learning based automated segmentation of the left ventricular trabeculations and myocardium on cardiac MR images: a feasibility study », Radiology: Artificial Intelligence, novembre 2020. DOI : 10.1148/ryai.2020200021.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »

13:27

Vidi Capital finalise son rapprochement avec le groupe IMAC à Cholet, qui rejoint le réseau. Cette opération porte à 110 le nombre de médecins en exercice, répartis au sein de sept entités et IMAC devient ainsi le deuxième groupe des Pays-de-la-Loire à s’adosser à Vidi Capital, après Vidi – Rad’Yon, annonce un communiqué de presse.

7:13

Bayer a annoncé la conclusion d’accords définitifs pour l’acquisition auprès d’Attralus de deux agents d’imagerie moléculaire expérimentaux, AT-01 et AT-05, destinés au diagnostic de l’amyloïdose cardiaque. Cette opération stratégique renforce la position de Bayer dans l’imagerie moléculaire et s’inscrit dans le développement de sa stratégie de cardiologie de précision, annonce un communiqué.
15 Jan

15:14

Les élections de l’European Society of Radiology (ESR) se tiendront du 8 au 21 janvier 2026. Deux candidates soutenues par la SFR, les professeurs Isabelle Thomassin-Naggara et Corinne Balleyguier, présentent leur candidature. Les radiologues français membres de l’ESR sont appelé à se mobiliser en votant par courriel : voting@polyas.com.

13:13

Bien que les unités mobiles de mammographie puissent améliorer l’accès aux soins pour des populations médicalement défavorisées, une étude pilote publiée dans Academic Radiology, met en lumière des opportunités pour promouvoir un suivi rapide et équitable des mammographies de dépistage anormales grâce à une meilleure navigation des patients, un soutien social et une aide financière.
Docteur Imago

GRATUIT
VOIR