Intelligence artificielle

Les atouts du manifold learning en neuro-imagerie

Vendredi 2 octobre, une session des JFR 2020 s’est intéressée aux applications de l’intelligence artificielle en neuroradiologie. Les intervenants ont notamment évoqué le potentiel du manifold learning pour extraire et analyser des marqueurs cliniques et radiologiques des maladies neurodégénératives.

icon réservé aux abonnésArticle réservé aux abonnés
Le 19/10/20 à 7:00, mise à jour aujourd'hui à 14:15 Lecture 3 min.

« Sans être supervisé, l’algorithme est capable d’utiliser les valeurs quantitatives extraites d’une séquence d’IRM pour différencier les cerveaux des sujets contrôles de ceux des patients malades, en séparant les variantes génétiques des démences fronto-temporales par exemple », décrit Arnaud Attyé. © Arnaud Attyé

Félix Renard et Arnaud Attyé, respectivement ingénieur en traitement d’images médicales au sein de la compagnie Pixyl et neuroradiologue à l’université Grenoble Alpes (38), ont travaillé sur le manifold learning. Cette forme d’apprentissage en intelligence artificielle, très utilisée en Data Science, est encore peu répandue en médecine. Elle consiste grosso modo à convertir un jeu de données de grande dimension en quelques variables caractéristiques dans un espace réduit. L'algorithme étudie ensuite la distance entre les individus dans cet espace pour diagnostiquer et pronostiquer les maladies.

« On ne moyenne rien »

« C’est une méthode qui permet de tenir compte de la variabilité individuelle. On ne moyenne rien, décrivait Arnaud Attyé lors d'une session des Journées francophones de radiologie 2020, le 2 octobre. Le caractère innovant des algorithmes de manifold learning développés à Grenoble ne repose pas sur l’étape de réduction de dimension, somme toute assez banale, mais sur l’étape

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

12 Fév

15:09

13:16

Comparé au rapport en texte libre, la compte rendu structuré améliore l’efficacité des radiologues lors de la radiographie thoracique en dirigeant l’attention visuelle vers l’image, tandis que le compte rendu prérempli par IA améliore la précision du diagnostic, conclut une étude publiée dans Radiology.

7:11

Le LLM polyvalent (Cohere Command-A) évalué dans une étude a démontré de solides performances dans l’automatisation de la stadification FIGO pour les cancers du col de l’utérus et de l’endomètre à partir des rapports IRM. Leur intégration pourrait réduire la charge de travail des radiologues.
11 Fév

16:09

Median Technologies a obtenu l’autorisation 510(k) de la FDA pour son dispositif médical eyonis® LCS.  Basé sur l’IA. Celui-ci vise à transformer le dépistage du cancer du poumon en aidant à son diagnostic à des stages précoces et curables et ce, en limitant les examens de suivi inutiles et les faux positifs.
Docteur Imago

GRATUIT
VOIR