Aide au diagnostic

L’intelligence artificielle distingue le COVID-19 d’une pneumonie sur les coupes de scanner

Des chercheurs chinois ont développé un modèle basé sur l’apprentissage profond capable de diagnostiquer le COVID-19 sur des examens de scanner avec une sensibilité et une spécificité très hautes et de le différencier d’une pneumonie communautaire, qui présente des caractéristiques similaires à l’imagerie.

Le 25/03/20 à 12:00, mise à jour aujourd'hui à 14:16 Lecture 2 min.

Pour entraîner leur modèle, les chercheurs ont collecté les données de scanner réalisés dans 6 hôpitaux sur des patients atteints de COVID-19, mais aussi, pour comparaison, sur des patients atteints de pneumonie communautaire et sur d’autres qui ne présentaient pas de pneumonie (photo d'illustration). © Chung M., Bernheim A., Mei X. et coll.

Il n’aura pas fallu longtemps pour que des chercheurs étudient les possibilités de l’intelligence artificielle pour la prise en charge du coronavirus. Une équipe de radiologues chinois présente ainsi dans Radiology un outil basé sur l’apprentissage profond capable de dépister le COVID-19 sur des examens de scanner thoracique [1].

Des données issues de 6 hôpitaux

Pour entraîner leur modèle, baptisé COVNet, ces médecins ont collecté les données d’examens de scanner réalisés dans 6 hôpitaux sur des patients atteints de COVID-19, mais aussi, pour comparaison, sur des patients atteints de pneumonie communautaire et sur d’autres qui ne présentaient pas de pneumonie. Au total, ils ont rassemblé les données de 4 356 scanners réalisés sur 3 322 patients entre août 2016 et février 2020.

90 % de sensibilité, 96 % de spécificité

Les patients étaient âgés en moyenne de 49 ± 15 ans. 1 838 étaient des hommes et 1 484 des femmes. Testé sur un jeu de données indépendant, le modèle a montré une sensibilité et une spécificité par examen pour la détection du COVID-19 de 90 % [95 % CI : 83 %, 94 %] et de 96 % [95 % CI : 93 %, 98 %) respectivement, avec une aire sous la courbe ROC de 0,96. Pour la détection de la pneumonie communautaire, la sensibilité pointe à 87 %, la spécificité à 92 % et l’AUC à 0,95. L’outil fournissait un résultat en moins de 5 secondes, sur une station de travail équipée d’un processeur graphique puissant.

Améliorer la spécificité du scanner au stade précoce

« Ces résultats démontrent qu’une approche basée sur l’apprentissage machine utilisant des modèles de réseaux de neurones convolutifs est capable de distinguer le COVID-19 de la pneumopathie communautaire », écrivent les chercheurs. Un tel système, avancent-ils, pourrait imposer le scanner comme un outil de détection du COVID-19 au stade précoce de la contamination, quand le test RT-PCR manque encore de sensibilité.

Pas de comparaison avec l’influenza

L’étude comporte cependant quelques limites, précisent ses auteurs. Les données d’entraînement et de test ne comprennent notamment pas de cas de pneumonies d’origine virale autre que le coronavirus, telles que le virus influenza, qui pourraient avoir des caractéristiques d’imagerie similaires. L’autre faiblesse vient de la variété des réponses des poumons à la contamination par un virus, qui dépendent de l’âge du patient, de son état immunitaire ou encore de ses comorbidités.

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Li L., Qin L., Xu Z. et coll., « Artificial intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT », Radiology, 19 mars 2020, DOI : 10.1148/radiol.2020200905.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.

15:42

La FDA a autorisé RevealAI-Lung, un outil d’intelligence artificielle développé par RevealDx pour détecter et caractériser les nodules pulmonaires sur les scanners, en fournissant aux radiologues un score de probabilité de malignité.

7:14

Les résultats d'une étude soulignent la persistance des inégalités homme/femme dans le financement de la recherche dans la radiologie. "Ce déséquilibre risque de freiner l'innovation et de limiter la diversité des perspectives qui orienteront les recherches futures", signalent les auteurs.
04 Fév

15:18

Le gouvernement a décidé de transférer plusieurs missions de Santé publique France (SPF), comme la réalisation de campagnes de communication ou la gestion des stocks et de la réserve sanitaire, au ministère de la santé, a déclaré vendredi 30 janvier le cabinet de la ministre de la santé, Stéphanie Rist, a rapporté Le Monde.

13:21

L'embolisation des artères méningées avec seulement des coils pourrait constituer une option thérapeutique sûre et efficace pour les hématomes sous-duraux chez les patients atteints de cancer. (Etude)
Docteur Imago

GRATUIT
VOIR