Aide au diagnostic

Un logiciel prédit la malignité des nodules thyroïdiens « aussi bien que les experts »

Grâce à un système logiciel quantitatif, des chercheurs de l’université de Stanford ont pu prédire la malignité de nodules thyroïdiens avec la même exactitude que des radiologues experts. Leur méthode pourrait permettre de réduire les biopsies et les chirurgies inutiles.

icon réservé aux abonnésArticle réservé aux abonnés
Le 04/02/20 à 16:00, mise à jour hier à 14:17 Lecture 1 min.

Exemple d'un patient de 73 ans atteint d'un carcinome papillaire du lobe gauche de la thyroïde. La capture d'écran montre un exemple d'annotation de nodule thyroïdien réalisée sur une image échographique. © AJR/Alfiia Galimzianova et al.

Quand l’œil de l’intelligence artificielle rivalise avec celui de l’expert. Une équipe américaine a développé une infrastructure logicielle quantitative (quantitative framework) qui serait capable de différencier les nodules thyroïdiens bénins et malins par échographie à un niveau comparable à celui des radiologues les plus expérimentés.

92 nodules confirmés par biopsie

Pour ces travaux publiés dans la revue American Journal of Roentgenology [1], la chercheuse Alfiia Galimzianova et ses collègues des départements de data science et de radiologie de l’université de Stanford (Californie), ont collecté rétrospectivement des images échographiques de 92 nodules confirmés par biopsie. Les nodules ont été délimités et annotés par deux radiologues experts en utilisant la méthode de classification TI-RADS (Thyroid Imaging Reporting and Data System).

Les résultats du logiciel comparés à ceux de 6 experts

Afin de prédire la malignité des nodules, les chercheurs ont analysé leurs caractéristiques en t

Il vous reste 58% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Bibliographie

  1. Galimzianova A., Siebert S. M., Kamaya A. et coll., « Quantitative Framework for Risk Stratification of Thyroid Nodules With Ultrasound: A Step Toward Automated Triage of Thyroid Cancer », American Journal of Roentgenology, 1 – 8. DOI : 10.2214/AJR.19.21350.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

19 Jan

16:52

13:08

Un algorithme basé sur un modèle de diffusion améliore efficacement la qualité de l'image et la fiabilité du diagnostic sans compromettre la détection des lésions, ce qui confirme son potentiel pour une utilisation clinique dans les scanners cérébraux portables. Étude.

7:30

Chez des patients atteints d'un AVC causé par une occlusion légère des grands vaisseaux, une étude rétrospective sur trois centres n'a pas constaté de différence de résultats à 12 mois entre ceux traités par thrombectomie et ceux traités selon les « meilleures pratiques médicales ».
16 Jan

15:29

Un tissu mammaire dense réduit la performance de la tomosynthèse mammaire numérique, selon une étude publiée dans Academic Radiology. « Ces résultats soulignent la nécessité de rapporter et de prendre en compte la densité mammaire dans les recommandations de dépistage. »
Docteur Imago

GRATUIT
VOIR