Intelligence artificielle

Un système d’apprentissage profond réduit de 80 % la dose de gadolinium en angio-IRM cardiaque

Des chercheurs londoniens ont entraîné un système d’apprentissage profond à reconstruire des images d’angio-IRM cardiaque réalisées avec une dose de produit de contraste 5 fois inférieure à la normale.

icon réservé aux abonnésArticle réservé aux abonnés
Le 27/08/21 à 7:00, mise à jour hier à 14:11 Lecture 3 min.

Cette technique pourrait permettre de réduire les risques liés à l'injection de gadolinium et les besoins d'examens complémentaires, avancent les chercheurs (photo d'illustration). © Carla Ferrand

Chez les patients atteints de maladies cardiaques congénitales, l’angio-IRM a fait ses preuves pour visualiser la vascularisation aortique et pulmonaire et détecter les sténoses vasculaires et autres anomalies. Les spécialistes s’inquiètent toutefois des effets adverses potentiels des agents de contraste à base de gadolinium, qui peuvent provoquer une fibrose néphrogénique systémique chez les patients en insuffisance rénale, et laisser dans le cerveau des dépôts dont les conséquences sont mal connues.
Pour résoudre – au moins en partie – ce problème, des chercheurs de l’Institut de science cardiovasculaire de l'University College de Londres, au Royaume-Uni, ont expérimenté une approche déjà testée en neuro-imagerie, qui consiste à réduire la dose de gadolinium injectée et à compenser la perte de qualité d’image grâce à l’intelligence artificielle [1]. Leurs résultats sont parus dans la revue Journal of Magnetic Resonance Imaging [2].

Une étude prospective et rétrospective

Ils ont d’abord

Il vous reste 80% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Gong E., Pauly J. M., Wintermark M. et coll., « Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI », Journal of Magnetic Resonance Imaging, 2018, vol. 48, p. 330-340. DOI : 10.1002/jmri.25970.
  2. Montalt-Tordera J., Quail M., Steeden J. A. et col., « Reducing contrast agent dose in cardiovascular MR angiography with deep learning », Journal of Magnetic Resonance Imaging, 2021, vol. 54, n° 3, p. 795-805. DOI : 10.1002/jmri.27573.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

06 Fév

16:08

Des chercheurs ont développé et validé un modèle de deep learning entièrement automatisé pour détecter et mesurer les masses surrénaliennes sur des scanners abdominaux injectés. Le modèle a le potentiel d’améliorer les taux de détection des lésions et de faciliter leur prise en charge précoce, indique l'étude.

13:06

Une étude publiée dans Radiology montre que le compte rendu structuré améliore l’efficacité des radiologues en réduisant le temps de rédaction et en recentrant l’attention visuelle sur l’image, par rapport au texte libre. L’ajout de l’intelligence artificielle augmente la précision diagnostique.

7:30

Une étude rétrospective montre que le score Node-RADS basé sur l’IRM offre une excellente précision diagnostique pour la détection des métastases ganglionnaires chez les patients atteints de cancer du rectum, avec une performance supérieure aux critères de taille et aux comptes rendus IRM classiques.
05 Fév

16:36

Le centre hospitalier Agen-Nérac (47) a mis en service le 26 janvier 2026 une nouvelle salle de radiologie numérisée sur son site de Nérac. D’un montant de 185 000 €, cet investissement améliore la qualité des diagnostics tout en réduisant l’exposition aux rayons, informe actu.fr.
Docteur Imago

GRATUIT
VOIR