Dépistage du cancer du sein

Un tri et un filet de sécurité par IA pour optimiser l’interprétation des mammographies

Des chercheurs ont développé un algorithme qui ne réfère que les mammographies anormales à un radiologue puis agit comme un « filet de sécurité » si le radiologue ne trouve rien sur les images particulièrement suspicieuses. Leur méthode surpasserait en performances le radiologue seul et l'IA seule tout en économisant la charge de travail du médecin.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/09/22 à 7:00, mise à jour aujourd'hui à 14:09 Lecture 2 min.

Comparés à la méthode des auteurs basée sur une IA qui réfère uniquement les cas problématiques au radiologue (courbe ROC bleue), le radiologue seul (point rouge) comme l'IA autonome (point violet) atteignent une sensibilité et une spécificité inférieures. © Leibig et coll., The Lancet Digital Health | CC BY 4.0

Une nouvelle méthode de dépistage du cancer du sein alliant intelligence artificielle et expertise humaine, baptisée decision-referral approach, pourrait surclasser les performances des radiologues, tout en allégeant leur charge de travail, annoncent ses concepteurs allemands.
Plusieurs IA ont déjà été testées pour repérer le cancer du sein sur des mammographies dans le cadre du dépistage organisé lors d'une deuxième lecture complètement autonome, mais ces algorithmes nécessitent la lecture de tous les examens par le radiologue, ce qui ne diminue pas la charge de travail du professionnel de santé, rappellent-ils dans la revue The Lancet Digital Health [1]. Enfin, si d'autres IA à l'essai envoient uniquement les mammographies anormales à étudier au radiologue, ces logiciels sont encore aujourd'hui associés à une diminution de la sensibilité du dépistage, soulignent les chercheurs

Combiner tri des images normales et « filet de sécurité » 

Pour pallier cette difficulté à combiner radiologu

Il vous reste 75% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Bibliographie

  1. Leibig C., Brehmer M., Bunk S. et coll., « Combining the strenghts of radiologists and AI for breast cancer screening: a retrospective analysis », The Lancet Digital Health, juillet 2022, vol. 4, n° 7, E507-E509. DOI : 10.1016/S2589-7500(22)00070-X.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

27 Nov

15:13

Chez les patients atteints de calcification coronarienne sévère, l’angiographie coronarienne ultra-haute résolution avec détecteur de photons a montré une sensibilité et une spécificité élevées pour détecter les sténoses dans des vaisseaux fortement calcifiés, réduisant potentiellement l’angiographie coronarienne invasive. (Étude)

13:10

Des chercheurs en Corée du Sud ont développé un modèle d’IA capable de détecter les méningiomes sur des radiographies du crâne. Validée sur des données internes et externes, la méthode démontre une performance élevée et constitue une alternative prometteuse pour les environnements disposant de ressources limitées. (Étude)

7:10

L’intelligence artificielle (IA) est de plus en plus intégrée dans la recherche et la pratique en radiographie. Selon une étude parue dans Radiography, GenAI et les LLM offrent des opportunités transformatrices pour la recherche en radiographie à travers plusieurs étapes, de la conception de l’étude à la diffusion. Leur intégration exige toutefois une validation rigoureuse et des garanties éthiques pour limiter les biais, les erreurs et les risques liés à la confidentialité.
Docteur Imago

GRATUIT
VOIR