Dépistage du cancer du sein

Un tri et un filet de sécurité par IA pour optimiser l’interprétation des mammographies

Des chercheurs ont développé un algorithme qui ne réfère que les mammographies anormales à un radiologue puis agit comme un « filet de sécurité » si le radiologue ne trouve rien sur les images particulièrement suspicieuses. Leur méthode surpasserait en performances le radiologue seul et l'IA seule tout en économisant la charge de travail du médecin.

icon réservé aux abonnésArticle réservé aux abonnés
Le 01/09/22 à 7:00, mise à jour aujourd'hui à 14:10 Lecture 2 min.

Comparés à la méthode des auteurs basée sur une IA qui réfère uniquement les cas problématiques au radiologue (courbe ROC bleue), le radiologue seul (point rouge) comme l'IA autonome (point violet) atteignent une sensibilité et une spécificité inférieures. © Leibig et coll., The Lancet Digital Health | CC BY 4.0

Une nouvelle méthode de dépistage du cancer du sein alliant intelligence artificielle et expertise humaine, baptisée decision-referral approach, pourrait surclasser les performances des radiologues, tout en allégeant leur charge de travail, annoncent ses concepteurs allemands.
Plusieurs IA ont déjà été testées pour repérer le cancer du sein sur des mammographies dans le cadre du dépistage organisé lors d'une deuxième lecture complètement autonome, mais ces algorithmes nécessitent la lecture de tous les examens par le radiologue, ce qui ne diminue pas la charge de travail du professionnel de santé, rappellent-ils dans la revue The Lancet Digital Health [1]. Enfin, si d'autres IA à l'essai envoient uniquement les mammographies anormales à étudier au radiologue, ces logiciels sont encore aujourd'hui associés à une diminution de la sensibilité du dépistage, soulignent les chercheurs

Combiner tri des images normales et « filet de sécurité » 

Pour pallier cette difficulté à combiner radiologu

Il vous reste 75% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

François Mallordy

Journaliste rédacteur spécialisé

Voir la fiche de l’auteur

Bibliographie

  1. Leibig C., Brehmer M., Bunk S. et coll., « Combining the strenghts of radiologists and AI for breast cancer screening: a retrospective analysis », The Lancet Digital Health, juillet 2022, vol. 4, n° 7, E507-E509. DOI : 10.1016/S2589-7500(22)00070-X.

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

12 Fév

15:09

13:16

Comparé au rapport en texte libre, la compte rendu structuré améliore l’efficacité des radiologues lors de la radiographie thoracique en dirigeant l’attention visuelle vers l’image, tandis que le compte rendu prérempli par IA améliore la précision du diagnostic, conclut une étude publiée dans Radiology.

7:11

Le LLM polyvalent (Cohere Command-A) évalué dans une étude a démontré de solides performances dans l’automatisation de la stadification FIGO pour les cancers du col de l’utérus et de l’endomètre à partir des rapports IRM. Leur intégration pourrait réduire la charge de travail des radiologues.
11 Fév

16:09

Median Technologies a obtenu l’autorisation 510(k) de la FDA pour son dispositif médical eyonis® LCS.  Basé sur l’IA. Celui-ci vise à transformer le dépistage du cancer du poumon en aidant à son diagnostic à des stages précoces et curables et ce, en limitant les examens de suivi inutiles et les faux positifs.
Docteur Imago

GRATUIT
VOIR