Un unique scanner thoracique basse dose, sans données cliniques associées ni annotations. C’est tout ce que nécessite Sybil, un nouveau modèle d’apprentissage profond, pour prédire le risque de développer un cancer du poumon chez différentes cohortes de sujets ayant participé à un dépistage du cancer bronchopulmonaire, d’après une étude rétrospective présentée en janvier 2023 dans Journal of Clinical Oncology [1].
Trois bases de données
Les chercheurs du Massachusetts Institute of Technology...

- Mikhael P. G., Wohlwend J., Yala A. et coll., « Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography », Journal of Clinical Oncology, 12 janvier 2023. DOI : 10.1200/JCO.22.01345.