Intelligence artificielle

Un modèle de machine learning pour rationaliser les soins aux urgences pédiatriques

Une étude présentée dans JAMA a évalué un modèle de directives médicales basées sur l’apprentissage machine. Ce processus automatisé permet de prédire et d’ordonner les examens d'imagerie au début du parcours du patient afin d’améliorer la prise de décision clinique et rationaliser les soins.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/05/22 à 15:00, mise à jour aujourd'hui à 14:09 Lecture 1 min.

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à l’un des 6 examens suivants : test de jauge urinaire, électrocardiogramme, échographie abdominale, échographie testiculaire, dosage de la bilirubine et radiographie de l’avant-bras (photo d'illustration). © https://pxhere.com/en/photo/643025

Peut-être une solution pour accélérer la prise en charge aux urgences ? Des chercheurs canadiens ont entraîné et expérimenté des modèles d’apprentissage machine conçus pour « trier » les patients admis aux urgences pédiatriques qui auront de besoin d’un examen spécifique avant qu’ils aient été évalués par un professionnel de santé. Ils présentent leurs résultats dans un article de la revue JAMA [1]. Pour ce faire, ils ont exploité les données issues des dossiers électroniques de 77 219 patients âgés de 0 à 18 ans se présentant au service d’urgence pédiatrique de l’Hospital for Sick Children, un hôpital de soins tertiaires de Toronto, au Canada, du 1er juillet 2018 au 30 juin 2019. Ils ont « nourri » leurs modèles avec de nombreuses données telles que le rythme cardiaque, la saturation sanguine, la tension, la température corporelle, les symptômes, etc.

Rationaliser les soins pour 22,3 % des patients

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à

Il vous reste 61% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Singh D., Nagaraj S., Mashouri P. et coll., « Assessment of machine learning-based medical directives to expedite care in pediatric emergency medicine », JAMA Network Open, 2022, vol. 5, n° 3. DOI : 10.1001/jamanetworkopen.2022.2599.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

19 Fév

16:11

Un nouveau capteur à base de lumière peut détecter des quantités incroyablement faibles de biomarqueurs cancéreux dans le sang, avant qu’il ne soit visible sur les scans, augmentant la possibilité d’une détection plus précoce et plus simple, indique un communiqué publié sur ScienceDaily.

13:14

Le Private Equity Stakeholder Project (PESP) a publié l’édition 2025 de son analyse annuelle des acquisitions dans le secteur de la santé, intitulé Private Equity Healthcare Deals : 2025 en revue. Le rapport indique que l’activité de capital-investissement est restée stable en 2025 dans le secteur de la santé, incluant environ une douzaine d’opérations en imagerie diagnostique.

7:30

Le Mammobile, un cabinet de radiologie ambulant, va sillonner à partir du mois de mars le département des Pyrénées Orientales, indique francebleu.fr. Le but est de permettre aux femmes âgées de 50 à 74 ans, habitant loin des centres de dépistage, de faire une mammographie.
18 Fév

16:00

Un radiologue exerçant à Saint-Jean-de-la-Ruelle (45) a été mis en examen pour viols en novembre 2025 après le signalement d'une patiente, informe La République du Centre. Depuis 1977, plusieurs signalements avaient déjà été faits à son encontre. Il est suspendu depuis 2015. Le parquet d'Orléans a lancé un appel à témoin. (Source)
Docteur Imago

GRATUIT
VOIR