Intelligence artificielle

Un modèle de machine learning pour rationaliser les soins aux urgences pédiatriques

Une étude présentée dans JAMA a évalué un modèle de directives médicales basées sur l’apprentissage machine. Ce processus automatisé permet de prédire et d’ordonner les examens d'imagerie au début du parcours du patient afin d’améliorer la prise de décision clinique et rationaliser les soins.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/05/22 à 15:00, mise à jour aujourd'hui à 14:11 Lecture 1 min.

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à l’un des 6 examens suivants : test de jauge urinaire, électrocardiogramme, échographie abdominale, échographie testiculaire, dosage de la bilirubine et radiographie de l’avant-bras (photo d'illustration). © https://pxhere.com/en/photo/643025

Peut-être une solution pour accélérer la prise en charge aux urgences ? Des chercheurs canadiens ont entraîné et expérimenté des modèles d’apprentissage machine conçus pour « trier » les patients admis aux urgences pédiatriques qui auront de besoin d’un examen spécifique avant qu’ils aient été évalués par un professionnel de santé. Ils présentent leurs résultats dans un article de la revue JAMA [1]. Pour ce faire, ils ont exploité les données issues des dossiers électroniques de 77 219 patients âgés de 0 à 18 ans se présentant au service d’urgence pédiatrique de l’Hospital for Sick Children, un hôpital de soins tertiaires de Toronto, au Canada, du 1er juillet 2018 au 30 juin 2019. Ils ont « nourri » leurs modèles avec de nombreuses données telles que le rythme cardiaque, la saturation sanguine, la tension, la température corporelle, les symptômes, etc.

Rationaliser les soins pour 22,3 % des patients

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à

Il vous reste 61% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Singh D., Nagaraj S., Mashouri P. et coll., « Assessment of machine learning-based medical directives to expedite care in pediatric emergency medicine », JAMA Network Open, 2022, vol. 5, n° 3. DOI : 10.1001/jamanetworkopen.2022.2599.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

19 Déc

15:09

Face à l'adoption du PLFSS par l'Assemblée national le 16 décembre dernier, les syndicats de médecins appellent à une mobilisation générale de la médecine libérale début janvier et à une grande manifestation à Paris, le samedi 10 janvier pour dénoncer des mesures qu'ils jugent dangereuses pour le système de santé et la santé des citoyens.

13:14

La radiomique hypothalamique combinée à des caractéristiques cliniques offre une approche exploratoire prometteuse pour prédire l’apnée obstructive du sommeil (AOS), indique une étude dont les résultats mettent en lumière le potentiel de la radiomique pour identifier les changements hypothalamiques associés à l’AOS.

7:08

La biopsie pulmonaire guidée par scanner assistée par laser améliore le succès de la première ponction, l’efficacité de la procédure et la sécurité par rapport à l’approche conventionnelle, indique une étude parue dans Radiography. Toutefois, ces résultats nécessitent une confirmation par des essais contrôlés randomisés multicentriques plus larges.
18 Déc

15:12

Les thérapies ciblées moléculaires occupent une place croissante en oncologie, notamment avec l’émergence de la nectine-4, un antigène tumoral surexprimé dans plusieurs cancers et particulièrement pertinent dans le carcinome urothélial. Une revue parue dans JNM synthétise les avancées récentes en théranostique moléculaire ciblant la nectine-4, en mettant en évidence le développement de radiotraceurs spécifiques offrant des performances diagnostiques comparables ou supérieures aux méthodes d’imagerie standard.
Docteur Imago

GRATUIT
VOIR