Intelligence artificielle

Un modèle de machine learning pour rationaliser les soins aux urgences pédiatriques

Une étude présentée dans JAMA a évalué un modèle de directives médicales basées sur l’apprentissage machine. Ce processus automatisé permet de prédire et d’ordonner les examens d'imagerie au début du parcours du patient afin d’améliorer la prise de décision clinique et rationaliser les soins.

icon réservé aux abonnésArticle réservé aux abonnés
Le 06/05/22 à 15:00, mise à jour aujourd'hui à 14:09 Lecture 1 min.

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à l’un des 6 examens suivants : test de jauge urinaire, électrocardiogramme, échographie abdominale, échographie testiculaire, dosage de la bilirubine et radiographie de l’avant-bras (photo d'illustration). © https://pxhere.com/en/photo/643025

Peut-être une solution pour accélérer la prise en charge aux urgences ? Des chercheurs canadiens ont entraîné et expérimenté des modèles d’apprentissage machine conçus pour « trier » les patients admis aux urgences pédiatriques qui auront de besoin d’un examen spécifique avant qu’ils aient été évalués par un professionnel de santé. Ils présentent leurs résultats dans un article de la revue JAMA [1]. Pour ce faire, ils ont exploité les données issues des dossiers électroniques de 77 219 patients âgés de 0 à 18 ans se présentant au service d’urgence pédiatrique de l’Hospital for Sick Children, un hôpital de soins tertiaires de Toronto, au Canada, du 1er juillet 2018 au 30 juin 2019. Ils ont « nourri » leurs modèles avec de nombreuses données telles que le rythme cardiaque, la saturation sanguine, la tension, la température corporelle, les symptômes, etc.

Rationaliser les soins pour 22,3 % des patients

Chaque modèle a été entraîné à prédire si le patient allait avoir un diagnostic associé à

Il vous reste 61% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Solenn Duplessy

Voir la fiche de l’auteur

Bibliographie

  1. Singh D., Nagaraj S., Mashouri P. et coll., « Assessment of machine learning-based medical directives to expedite care in pediatric emergency medicine », JAMA Network Open, 2022, vol. 5, n° 3. DOI : 10.1001/jamanetworkopen.2022.2599.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

28 Oct

16:00

Les radiologues universitaires ayant une carrière active en recherche déclarent disposer plus fréquemment des ressources nécessaires pour la recherche (temps, ressources financières, motivation) que les radiologues moins actifs dans ce domaine (étude).

13:47

La quatorzième édition de la Journée mondiale de la radiologie aura lieu le 8 novembre 2025. L'objectif de cette initiative est de mieux faire connaître la valeur ajoutée de la radiologie et d'améliorer la compréhension du grand public sur le rôle essentiel des professionnels de l'imagerie dans le parcours de soins.

7:30

Des chercheurs chinois ont développé un modèle basé sur l'apprentissage profond pour générer des caractéristiques propres à la tomosynthèse à partir d'images de mammographie numérique. Il a permis d'améliorer la précision diagnostique et la caractérisation des lésions, assurent-ils dans European Journal of Radiology.
27 Oct

16:00

Dans un communiqué daté du 22 octobre 2025, le Conseil national de l'Ordre des médecins critique le projet de loi de financement de la sécurité sociale pour 2026. « L’intérêt du patient est relégué derrière la logique financière », juge-t-il, appelant à une « consultation élargie ».
Docteur Imago

GRATUIT
VOIR