Apprentissage profond

Une IA de Google trie les radios thoraciques pour améliorer le flux de travail

Des chercheurs de Google Health ont entraîné et testé un système d’apprentissage profond capable de trier les examens de radiographie thoracique qui présentent des anomalies. Évalué dans le cadre d’une simulation de flux de travail, il a permis de réduire de 7 à 28 % le temps de prise en charge des cas anormaux.

icon réservé aux abonnésArticle réservé aux abonnés
Le 29/09/21 à 16:00, mise à jour hier à 14:12 Lecture 3 min.

Le système de deep learning a été entraîné et réglé à l’aide d’une base de données de 248 445 patients d’un réseau de 5 groupes d’hôpitaux en Inde. © Nabulsi Z. et coll.

Les systèmes d’intelligence artificielle conçus pour analyser les radiographies thoraciques sont déjà nombreux. Pour la plupart, ils se concentrent sur la détection d’anomalies ou de pathologies spécifiques : pneumonies, épanchements pleuraux, etc. Pour Zaid Nabulsi et ses confrères de Google Health, la branche santé du géant de l’informatique, cette approche a le défaut de limiter leur utilité pour un centre ou un service de radiologie qui voudrait une assistance pour « prioriser » les patients et améliorer son flux de travail. Un algorithme conçu pour détecter une pathologie peut en effet passer à côté d’une autre et il est irréaliste d’imaginer agréger des systèmes multiples qui détecteraient chacun une ou plusieurs pathologies séparées, écrivent-ils dans la revue Scientific Reports [1].

Différencier les radios « normales » et « anormales »

Les chercheurs de la firme californienne ont donc opté pour une autre démarche, et développé un algorithme d’apprentissage profond capable de diff

Il vous reste 76% de l’article à lire

Docteur Imago réserve cet article à ses abonnés

S'abonner à l'édition
  • Tous les contenus « abonnés » en illimité
  • Le journal numérique en avant-première
  • Newsletters exclusives, club abonnés

Abonnez-vous !

Docteur Imago en illimité sur desktop, tablette, smartphone, une offre 100% numérique

Offre mensuelle 100 % numérique

23 €

par mois

S’abonner à Docteur Imago

Auteurs

Jérome Hoff

Rédacteur en chef adjoint BOM Presse Clichy

Voir la fiche de l’auteur

Bibliographie

  1. Nabulsi Z., Sellergren A., Jamshy S. et coll., « Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19 », Scientific Reports, septembre 2021, vol. 11, n° 15553. DOI : https://doi.org/10.1038/s41598-021-93967-2.

Discussion

Aucun commentaire

Laisser un commentaire

Sur le même thème

Le fil Docteur Imago

10 Fév

7:12

Des chercheurs ont développé et validé un modèle pronostique combinant des caractéristiques IRM préthérapeutiques et des données cliniques chez des patients atteints de carcinome hépatocellulaire traités par une chimioembolisation transartérielle, chimiothérapie par perfusion artérielle hépatique et immunothérapie ciblée. Le modèle de synergie imagerie fonctionnelle-fonction hépatique démontre une précision pronostique supérieure à celle des paramètres conventionnels de charge tumorale chez les patients atteints de carcinome hépatocellulaire recevant une thérapie quadruple. De plus, le système de notation à 10 points dérivé permet une stratification des risques cliniquement exploitables. (Étude)  
09 Fév

16:06

Chez les participantes de l'essai canadien Tomosynthesis Mammographic Imaging Screening Trial âgées de 40 à 44 ans et de plus de 75 ans, le dépistage du cancer du sein par tomosynthèse a donné des performances plus favorables que le dépistage par mammographie. Étude.

14:02

Planmed annonce le marquage CE et la commercialisation de XFI®, son scanner cone-beam (CBCT) pour l'imagerie corps entier en charge. La certification concerne l'imagerie des extrémités, de la tête et du cou, précise un communiqué.

7:30

Un essai randomisé contrôlé sur 60 patientes atteintes d'adénomyose démontre que l'embolisation des artères utérines résulte en une résolution plus complète de la douleur pelvienne chronique et des saignements que le traitement par diénogest. Étude.
Docteur Imago

GRATUIT
VOIR