Intelligence artificielle

Un nouveau système d’analyse automatisée espère « transformer la prise en charge des patients »

Grâce aux possibilités du deep learning et des algorithmes de diagnostic, la société Zebra Medical Vision a mis au point un outil qui génère une analyse automatisée des données d’imagerie. Le dispositif a récemment fait l’objet d’un marquage CE.

Le 04/10/17 à 7:00, mise à jour aujourd'hui à 14:23 Lecture 1 min.

En associant l’imagerie médicale à l’apprentissage automatique, la société Zebra Medical Vision espère « transformer la prise en charge des patients ». CC0-domaine public / Pixabay - Photo d'illustration

La société Zebra Medical Vision, spécialisée dans la mise au point de systèmes d’intelligence artificielle, a annoncé au mois de juin l’obtention du marquage CE pour son outil Analytics Engine®. Ce logiciel est conçu pour fournir une analyse automatisée des données d’imagerie. Il peut être intégré dans les systèmes PACS et RIS.

Une analyse automatisée de « millions d’images »

« Nos solutions fournissent une analyse automatisée de millions d’images en temps réel et de manière rétrospective, indiquent les concepteurs. Cela permet une identification précoce de la maladie et la mise en œuvre d’outils d’aide à la prise de décision pour la santé de la population et la gestion des risques. » En associant l’imagerie médicale à l’apprentissage automatique pour détecter et diagnostiquer des pathologies, la société espère « transformer la prise en charge des patients ». Les concepteurs assurent que leur outil permet ainsi « d’augmenter la rapidité et l’efficacité du diagnostic ».

Un diagnostic « plus précoce »

Selon le PDG de la société, Elad Benjamin, cette technologie d’analyse de données ouvre la voie à un diagnostic plus précoce et plus précis. « Grâce aux avancées des logiciels, il est possible de créer des algorithmes de qualité diagnostique basés sur les big data surpassant les taux de précision de lecture actuelle, assure-t-il. Ces algorithmes réduiront les faux positifs, identifieront les faux négatifs, fourniront un diagnostic plus précoce du cancer ou d’autres maladies et aideront à réaliser des découvertes fortuites dissimulées dans les vastes quantités de données d’imagerie se trouvant dans les archives des fournisseurs de santé. »

Auteurs

Carla Ferrand

Journaliste cheffe de rubrique

Voir la fiche de l’auteur

Discussion

Aucun commentaire

Laisser un commentaire

Le fil Docteur Imago

21 Nov

15:34

Des chercheurs ont examiné l’association entre la charge allostatique (AL), un indicateur de dysrégulation physiologique liée au stress, et la présence de pathologie maligne lors de biopsies mammaires guidées par imagerie. Les résultats suggèrent qu’une AL plus élevée est liée à un risque accru de pathologie maligne, ce qui pourrait guider des stratégies de dépistage personnalisées, indique une étude publiée dans JACR.

13:17

L’IRM rapide avec la reconstruction par apprentissage profond (DLR) améliore la qualité d’image et la précision diagnostique pour l’appendicite complexe par rapport à l’IRM non DLR et à la tomographie par contraste, offrant une alternative précieuse pour les patients sensibles aux radiations. (Étude).

7:09

Une étude évaluant plusieurs grands modèles de langage a montré que le modèle OpenAI o3 obtenait la meilleure précision à l’examen national japonais des techniciens en radiologie, atteignant 90 % de réussite.
20 Nov

15:06

Une étude montre que l’angioscanner coronaire à détecteur photonique, réalisée avec des doses réduites de rayonnement et de produit de contraste, offre une excellente qualité d’image et une précision diagnostique élevée, en particulier avec les reconstructions en VMI à 55 keV. Cette technique permet de détecter avec fiabilité les sténoses obstructives et les resténoses intrastent chez des patients souffrant d’une maladie coronarienne associée à l’inflammation.
Docteur Imago

GRATUIT
VOIR